Bebauungsplan "Am Russenweiher" in Speyer

Bericht zur Orientierenden Untersuchung im B-Plan Bereich Altablagerung am Russenweiher

Teilfläche IV

Auftraggeber PRO KOMMUNA KIRN GmbH, Stuttgarter Straße 13 A 75179 Pforzheim

Bearbeiter

Herr Dipl.-Geol. R.. Ebner Tel.: +49 (0) 621/67 19 61-14 ebner@igb-ingenieure.de

Frau M. Sc. K. Storz

Tel.: +49 (0) 621/67 19 61-17 storz@igb-ingenieure.de

Projektnummer

14-5010

Datum

15.01.2016

Anschrift

Heinigstraße 26 – 67059 Ludwigshafen am Rhein

 $(06\ 21)\ 67\ 19\ 61-10$ Tel.:

eMail: ludwigshafen@igb-ingenieure.de

INHALTSVERZEICHNIS

Seite

1	VORGANG, AUFGABENSTELLUNG, UNTERLAGEN2				
	1.1	Vorgang, Aufgabenstellung	2		
	1.2	Unterlagen	3		
2	STAN	DORTBESCHREIBUNG	5		
	2.1	Allgemeines	5		
	2.2	Geologie und Hydrogeologie	5		
3	DURC	CHGEFÜHRTE ARBEITEN	7		
	3.1	Untergrundaufschlüsse	7		
	3.2	Probenahme	8		
	3.3	Chemische Analytik	9		
4	ERGE	BNISSE	10		
	4.1	Bewertungskriterien	10		
	4.2	Untergrundaufschlüsse	11		
	4.3	Chemische Analytik	11		
	4.3.1	Wirkungspfad Boden-Bodenluft-Mensch	11		
	4.3.2	Wirkungspfad Boden-Mensch	13		
	4.3.3	Wirkungspfad Boden-Grundwasser	15		
5	ZUSA	MMENFASSENDE BEWERTUNG	17		
AN	LAGE	NVERZEICHNIS	19		

1 VORGANG, AUFGABENSTELLUNG, UNTERLAGEN

1.1 Vorgang, Aufgabenstellung

Die PRO KOMMUNA KIRN GmbH (PRO KOMMUNA) erschließt das Neubaugebiet "Am Russenweiher" auf der Gemarkung der Stadt Speyer. Für die weiteren Planungsschritte zur Erschließung des Neubaugebietes (NBG) wurde unter anderem eine Baugrunderkundung mit geo- und umwelttechnischer Beratung von der IGB Rhein-Neckar Ingenieurgesellschaft mbH, Ludwigshafen (IGB Rhein-Neckar) mit Bericht vom 28.11.2014 [U 1] durchgeführt.

Entsprechend des Abstimmungsgespräches mit der Stadt Speyer und PRO KOMMUNA vom 02.09.2015 [U 9] sowie des Protokolls zum Abstimmungsgespräch mit der Stadt Speyer (Untere Bodenschutz- und Wasserbehörde) am 19.01.2015 [U 5] sollten im Rahmen des B-Plan-Verfahrens weitere umwelttechnische Untersuchungen zur Altablagerung "Am Russenweiher" durchgeführt werden. Aus Sicht der Unteren Bodenschutzund Wasserbehörde sollten im betroffenen Bereich der Altablagerung "Am Russenweiher" (bisherige Flurstücksnummer 3765/21), wo insgesamt drei Wohnhäuser geplant sind, zur Gefährdungsabschätzung der Schutzgüter Mensch, Bodenluft-Boden, Grundwasser weitere umwelttechnische Untersuchungen gemäß Bundesbodenschutz- und Altlastenverordnung BBodschV [U 2] und ALEX-Merkblätter Rheinland-Pfalz [U 3], [U 4], [U 8] durchgeführt werden. Weiterhin war der von der Altablagerung betroffene geplante öffentliche Grünbereich zu untersuchen. Im ersten Schritt wurde dazu ein Erkundungskonzept [U 11] den zuständigen Behörden zur Abstimmung vorgelegt. Mit Email vom 14.10.2015 wurden die in [U 11] vorgeschlagenen Untersuchungen - mit zwei Ergänzungen- durch die Untere Bodenschutz- und Wasserbehörde der Stadt Speyer genehmigt [U 12].

Vor diesem Hintergrund wurde die IGB Rhein-Neckar von der PRO KOMMUNA mit Schreiben vom 24.09.2015 über weitere umwelttechnische Untersuchungen zur Altablagerung beauftragt. Abstimmungsgemäß wird für jedes der drei Wohnhausgrundstücke sowie für den Grundstücksbereich der öffentlichen Grünfläche ein eigener Bericht vorgelegt. Dieser vorliegende Bericht umfasst die Erkundungsarbeiten auf Teilfläche IV – öffentliche Grünfläche (s. Lageplan in **Anlage 2**).

1.2 Unterlagen

Bei der Erstellung des Berichts wurde auf folgende Unterlagen zurückgegriffen:

- [U 1] Neubaugebiet "Am Russenweiher" in Speyer: Baugrunderkundung mit geound umwelttechnischer Beratung. 28.11.2014, IGB Rhein-Neckar. Auftraggeber: PRO KOMMUNA Kirn GmbH, Pforzheim
- [U 2] Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999 (BGBI. I S. 1554), die durch Artikel 102 der Verordnung vom 31. August 2015 (BGBI. I S. 1474) geändert worden ist
- [U 3] Merkblatt ALEX 14: BODENSCHUTZ, Arbeitshilfe Qualitätssicherung, Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht (LUWG), Stand Mai 2011
- [U 4] Merkblatt ALEX 02: BODENSCHUTZ, Orientierungswerte für die abfall- und wasserwirtschaftliche Beurteilung, Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht, Stand Oktober 2011
- [U 5] Neubaugebiet "Am Russenweiher" in Speyer, Protokoll zum Abstimmungsgespräch mit der Stadt Speyer, Untere Bodenschutz- Wasserbehörde am 19.01.2015 im Rathaus Speyer, IGB Rhein-Neckar vom 21.01.2015
- [U 6] Altablagerung am Russenweiher, Orientierende Untersuchung Flurstück 3765/21 vom 27.11.2006, Peschla + Rochmes GmbH
- [U 7] Probenahme und Beurteilung der Bodenchemie zur Anlage von Flachwasserzonen am Russenweiher in Speyer, 27.11.2011, TerraPlan Geoconsult.
- [U 8] Merkblatt ALEX 01: BODENSCHUTZ, Untersuchungsparameter für die abfallund wasserwirtschaftliche Untersuchung, Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht, Stand März 2012
- [U 9] Neubaugebiet "Am Russenweiher" in Speyer, Aktennotiz über Besprechung am 02.09.2015 bei der Stadt Speyer mit Ergänzungen vom 08.09.2015, PRO KOMMUNA vom 04. und 10.09.2015

- [U 10] Altablagerungskataster Rheinland-Pfalz (ALG(VF/AL)KAT) Erhebungsbogen Ablagerungsstelle Speyer, Am Russenweiher, Stand 03.08.2011
- [U 11] Neubaugebiet "Am Russenweiher" in Speyer: Erkundungskonzept B-Plan Bereich Altablagerung am Russenweiher. 07.10.2015, IGB Rhein-Neckar. Auftraggeber: PRO KOMMUNA Kirn GmbH, Pforzheim
- [U 12] B-Plan Russenweiher, Erkundungskonzept Teilbereich Altablagerung. Email vom 14.10.2015: Genehmigung Erkundungskonzept Altablagerung durch das Umweltamt der Stadt Speyer
- [U 13] Hydrogeologische Kartierung und Grundwasserbewirtschaftung im Raum Karlsruhe-Speyer, Fortschreibung 1986 – 2005; Umweltministeriums Baden-Württemberg und des Ministeriums für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz (Stand 2007)
- [U 14] Geologische Karte von Rheinland-Pfalz Blatt 6616 Speyer, LGB Mainz 2006
- [U 15] Anforderungen an die stoffliche Verwertung von mineralischen Abfällen (LAGA-TR), Technische Regeln der Länderarbeitsgemeinschaft Abfall (LAGA), Teil II: Technische Regeln für die Verwertung (TR-Boden), 05.11.2004
- [U 16] Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/ Abfällen (LAGA-TR), Technische Regel der Länderarbeitsgemeinschaft Abfall (LAGA), Stand 06.11.1997, LAGA - Mitteilung Nr. 20

2 STANDORTBESCHREIBUNG

2.1 Allgemeines

Das Neubaugebiet "Am Russenweiher" liegt südlich der Bundesstraße 39 im südöstlichen Bereich der Stadt Speyer. Das Neubaugebiet wird im Norden von der Straße "Am Germansberg", im Westen durch den Gewässerlauf des Renngrabens, im Süden durch den Russenweiher und im Osten durch die Winternheimer Straße begrenzt (s. **Anlage 1**). Das Gebiet wird derzeit von der Krummäckerstraße durchquert.

Die Altablagerung "Am Russenweiher" mit der Registriernummer 318 00 000 – 241 befindet sich größtenteils auf dem Flurstück 3765/21 (s. **Anlage 2**). Gemäß dem Altablagerungskataster von Rheinland-Pfalz [U 10] wurden dort von ca. 1955 bis 1969 Erdaushub und Bauschuttmaterialien sowie Siedlungsabfälle abgelagert. Die Ablagerungsfläche beträgt ca. 5.000 m².

Nach Angaben der Stadt Speyer wurde der angrenzende Russenweiher im Jahre 1981 entschlammt. Dabei wurde der ausgehobene Schlamm auf die umgebenden Flächen aufgebracht. Möglicherweise ist hiervon auch der westliche und südliche Bereich des zu untersuchenden Flurstückes 3765/21 betroffen [U 6].

Die in diesem Bericht beschriebene Teilfläche IV grenzt im Süden an den Russenweiher und im Westen an den Haspelweg. Im Norden schließen sich die Teilfächen I bis III an (Teilfläche IV s. Lageplan in **Anlage 2**).

2.2 Geologie und Hydrogeologie

Das Projektgebiet liegt im Bereich der Rheinniederung des Oberrheingrabens auf der westlichen Grabenrandscholle. Gemäß der geologischen Karte [U 14] befindet es sich im Bereich der Rheinauen mit alten Mäandersystemen (Altläufe und Umlaufflächen). Es stehen feinklastische Sedimente, fluviatile Sande und Kiese des Quartärs mit in unterschiedlichen Tiefen eingeschalteten Tonen und Schluffen an. Nähere Angaben zur Geologie und den im Neubaugebiet Russenweiher bereits durchgeführten Untergrunderkundungen können [U 1] entnommen werden.

Im Bereich der vermuteten Altablagerung auf dem Flurstück 3765/21 wurden in [U 1] zwei Rammkernsondierungen KRB 7 und 8 niedergebracht. Es zeigte sich zunächst bis in 0,4 bis 0,6 m Tiefe ein Oberboden aus aufgefüllten, feinsandigen oder tlw. kiesigen Schluffen. Teilweise lagen Ziegelbruchstücke sowie organische Bestandteile vor. Darunter folgt eine anthropogene Auffüllung bis 1,80 m bzw. 4,0 m unter Gelände. Dort wurden aufgefüllte Schluffe und Sande mit Fremdbestandteilen in Form von Ziegel, Keramik und Glas festgestellt. Unter den aufgefüllten Böden wurden bei den beiden Rammkernsondierungen jeweils Kiessande angetroffen, die gleichzeitig den Oberen Grundwasserleiter bilden.

Zum Zeitpunkt der Feldarbeiten am 24.10.2014 [U 1] konnte in dem ca. 5 m tiefen Aufschlüssen KRB 7 Grundwasser in ca. 3,0 m u. GOK festgestellt werden, was einer Höhe von 92,5 m +NN entspricht. Es handelt sich hierbei um teileingespiegelte Wasserstände (keine Ruhegrundwasserstände). Aus den Messergebnissen kann auf überwiegend ungespannte Grundwasserverhältnisse des oberen Grundwasserleiters geschlossen werden. Die großräumige Grundwasserfließrichtung im Oberen Grundwasserleiter geht bei normalen Rheinwasserständen nach Nordosten zum Rhein hin [U 13].

Die Grundwasserstände werden maßgeblich beeinflusst durch die Wasserstände im Rhein und Berghäuser Altrhein.

3 DURCHGEFÜHRTE ARBEITEN

Zur Gefährdungsabschätzung der Schutzgüter Mensch, Bodenluft-Boden, Grundwasser wurden auf der Teilfläche IV der Altablagerung "Am Russenweiher" (bisherige Flurstücksnummer 3765/21), wo ein öffentlicher Grünbereich geplant ist, weitere umwelttechnische Untersuchungen durchgeführt. Die notwendige Anzahl der RKS wurde aus der Bundesbodenschutzverordnung (BBodSchV) [U 2] sowie dem in Rheinland-Pfalz gültigen Merkblatt ALEX 14 [U 3] abgeleitet. Dies gilt auch für die Anzahl und Bodentiefe der zu entnehmenden Oberbodenproben und die Erstellung von Mischproben. Gemäß dem mit der Untere Bodenschutz- und Wasserbehörde der Stadt Speyer abgestimmten Untersuchungskonzept [U 11] wurden im Zeitraum 28. bis 30.10.2015 die folgenden Untergrunderkundungen durchgeführt:

3.1 Untergrundaufschlüsse

Folgende Untergrundaufschlüsse wurden durchgeführt:

- Überprüfung der 5 Bohransatzpunkte auf Kampfmittelfreiheit im Vorfeld der Bohrungen (s. **Anlage 7**),
- 2 Rammkernsondierungen (RKS 10, RKS 13) bis auf 4 m, 3 Rammkernsondierungen (RKS 11, RKS 12, RKS 14) bis auf 5 m, insgesamt 23 Bohrmeter (s. **Anlage 3**),
- Ausbau der 5 RKS zu temporären Bodenluftpegeln (s. Anlage 3),
- Ausbau der RKS 12 als 2"-Grundwasserpegel P2 am Ort der Beurteilung nach der Bodenluftprobenahme (s. Anlage 3). Der Pegel P2 auf der öffentlichen Grünfläche soll zunächst für weitere Grundwasserstandsmessungen und Grundwasserprobenahmen erhalten bleiben,
- Einmessen der 5 Bohransatzpunkte auf Lage und Höhe (m +NN) im ETRS 89/UTM 32N-System (s. **Anlage 6**).
- Verfüllung der Bohrlöcher mit Quellton nach Probennahme.

3.2 Probenahme

Wirkungspfad Boden-Bodenluft-Mensch

Zur Beurteilung des Wirkungspfades Boden-Bodenluft-Mensch wurden aus den 5 temporären Bodenluftpegeln jeweils Bodenluftproben auf Aktivkohle entnommen. Vor Ort wurde die Bodenluftkonzentration von Feldparameter / Deponiegas (Sauerstoff, Kohlendioxid, Stickstoff, Methan, Schwefelwasserstoff) bestimmt (s. **Anlage 4**).

Nach der Probenahme wurden die Bodenluftpegel zurückgebaut.

Wirkungspfad Boden-Mensch

Es kann davon ausgegangen werden, dass mögliche Schadstoffe in der beurteilungsrelevanten Bodenschicht (0-10 cm unter Geländeoberkante (GOK), Kontaktbereich für orale und dermale Schadstoffaufnahme) annähernd gleichmäßig über die Flächen verteilt sind. Der zu beurteilende Bodenhorizont befindet sich augenscheinlich oberhalb der Altablagerung im Oberboden bzw. im Bereich des Abdeckmaterials der Altablagerung. Nach [U 2] kann unter dieser Voraussetzung auf Flächen bis 10.000 m² für jeweils 1.000 m², mindestens aber von 3 Teilflächen, eine Mischprobe entnommen werden.

Um die genannte Aufgabenstellung zu erfüllen, wurden für die Teilfläche IV (Grünfläche ca. 1.500 m²) die als Park- und Freizeitanlage genutzt werden soll, insgesamt 4 Mischproben aus dem Tiefenbereich 0 - 0,1 m u. GOK entnommen. Die Bodenmischproben wurden jeweils aus 20 Einzelproben hergestellt. (s. **Anlage 4**).

Wirkungspfad Boden-Grundwasser

Zur Beurteilung des Wirkungspfades Boden-Grundwasser wurde aus dem Pegel RKS 12 / P2 eine oberflächennahe Grundwasserprobe (Ort der Beurteilung) entnommen. Bei der Probenahme wurden die Feldparameter Temperatur, elektrische Leitfähigkeit, pH, Sauerstoff, Redox gemessen und protokolliert (s. **Anlage 4**). Die entnommenen Grundwasserproben wurden unmittelbar nach der Probenahme ins chemische Labor Eurofins (Eurofins Umwelt West GmbH Ndl. Speyer, Hasenpfühlerweide 16, 67346 Speyer) geliefert.

Nach der Probenahme wurde der temporäre Grundwasserpegel zurückgebaut.

3.3 Chemische Analytik

Die entnommenen Proben wurden dem chemischen Labor Eurofins Umwelt West übergeben und auf folgende Parameter analysiert (s. Laborprotokolle in **Anlage 5**):

Wirkungspfad Bodenluft- Mensch:

 Analyse der Bodenluftproben auf die Parameter nach ALEX 01 [U 8], sowie zusätzlich AKW und LHKW, 5 Stück.

Wirkungspfad Boden-Mensch:

 Analyse der Oberbodenmischproben aus dem Tiefenbereich 0-0,1 m u. gemäß BBodSchV [U 2], Anhang 2, Kap. 1.4 (anorganische und organische Parameter), 4 Stück.

Wirkungspfad Boden-Grundwasser:

 Analyse von 1 Grundwasserprobe aus dem Grundwasser-Schwankungsbereich gemäß ALEX 01 [U 8], Parameter der Stufe 1 und zusätzlich auf LHKW inkl. VC, PAK nach EPA Liste, AKW nach ALEX, 1 Stück,

4 ERGEBNISSE

4.1 Bewertungskriterien

Wirkungspfad Boden- Bodenluft- Mensch

Zur Beurteilung der im Boden befindlichen Inhaltsstoffe (Leichtflüchter) und zur Bewertung des Direktpfades Boden-Bodenluft-Mensch wurden die Prüfwerte nach ALEX 02 [U 4] herangezogen.

Wirkungspfad Boden - Mensch

Zur Beurteilung der im Oberboden befindlichen Inhaltsstoffe und zur Bewertung des Direktpfades Boden-Mensch werden die Prüfwerte der BBodSchV [U 2] herangezogen. Da die zu untersuchenden Flächen als öffentlicher Grünbereich genutzt wird, sind für eine bodenschutzrechtliche Bewertung nach Anhang 2, Kap. 1.3, der BBodSchV die Prüfwerte für Park- und Freizeitflächen maßgeblich. Ergänzend dazu werden auch die Prüfwerte (oPW2-Bodenwerte) nach ALEX 02 [U 4] der Zielebene 2 herangezogen.

Wirkungspfad Boden - Grundwasser

Zur Bewertung des Wirkungspfades Boden-Grundwasser sind die Prüfwerte (oPW-Wasserwerte) nach ALEX 02 [U 4] maßgeblich.

4.2 Untergrundaufschlüsse

Die RKS 10 und 13 wurden bis in 4 m u. GOK abgeteuft, RKS 11, 12 und 14 bis in 5 m u. GOK. In den RKS 10, 11 und 14 wurde in den oberen 0,3 m bis 0,5 m u. GOK eine feinsandige, schluffige Auffüllung (Oberboden) angetroffen, die Ziegelbruchstücke und Pflanzenreste enthält. Unterhalb des Oberbodens bzw. bei RKS 13 über den gesamten Auffüllbereich liegt bis in ca. 1,8 m bzw. 4,3 m u. GOK Auffüllmaterial im Wesentlichen bestehend aus Kies mit sandigen und schluffigen Komponenten und anteilig mit Ziegelund Betonbruchstücken. Bei der RKS 12 setzt sich die angetroffene Auffüllung von 0 bis 2,9 m u. GOK aus einem kiesig, schluffigen Sand mit eingelagerten Ziegelbruchstücken zusammen. Auffallend sind die angetroffenen Glasscherben von 2,9 m bis 4,0 m u. GOK. Unterhalb der Auffüllung befindet sich in RKS 10 ab 1,8 m sandiger Kies. In den RKS 11 bis 13 steht der Kies ab ca. 4 m u. GOK an, in RKS 14 ab ca. 4,3 m u. GOK an. Vermutlich handelt es sich bei dem in RKS 14 von 4,3 m bis 5,0 m angebohrten schluffig, sandigen Kies ebenfalls um Anstehendes.

Während der Sondierungen wurde in RKS 10 bis 14 ab ca. 2,9 m bis 4,1 m u. GOK Grundwasser angetroffen. Nach Beendigung der Bohrung RKS 12 wurde im ausgebauten 2"-Pegel P2 am 30.10.2015 der Wasserstand bei 3,02 m u. GOK (entspricht 92,77 m +NN) gemessen.

Im Verlauf der Sondierungen wurden bis auf die Glasscherbeneinlagerungen bei RKS 12 keine organoleptischen Auffälligkeiten festgestellt. Hinweise auf Schlammablagerungen vom Russenweiher ergaben sich nicht.

4.3 Chemische Analytik

4.3.1 Wirkungspfad Boden-Bodenluft-Mensch

Die gemessenen Feldparameter Kohlendioxid (CO₂), Sauerstoff (O₂), Methan (CH₄) und Schwefelwasserstoff (H₂S) bei den fünf Bodenluftmessungen sind in den Probenahme-protokollen in **Anlage 4** dokumentiert. Die Kohlendioxidkonzentration liegt in der Atmosphäre bei ca. 0,04 Vol.-%, in der Bodenluft in einem typischen Schwankungsbereich von 0 bis ca. 5 Vol.-%. Methan liegt in der Atmosphäre und in der Bodenluft meist nur in Spuren vor (ca. 0,002 Vol.-%). Der Sauerstoffgehalt liegt in der Atmosphäre bei ca. 21 Vol.-% und kann in der Bodenluft zwischen 0 und 21 Vol.-% betragen. Die gemessenen

Werte liegen alle in diesem Schwankungsbreiten und sind insgesamt unauffällig. Methan- und Schwefelwasserstoffgehalte über der Nachweisgrenze wurden nicht gemessen.

Die Bodenluftmessungen auf die Parameter leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW) und auf leichtflüchtige aromatische Kohlenwasserstoffe (AKW) ergaben im Bereich der fünf Bodenluftmesspunkte RKS 10 bis RKS 14 keine Überschreitungen der Prüfwerte nach ALEX 02 von jeweils 1 mg/m³ [U 4], nach denen weitere Untersuchungen zu ergreifen wären.

LHKW konnten nur in RKS 11 und RKS 13 in Spuren nachgewiesen werden (0,02 mg/m³ bzw, 0,014 mg/m³ Tetrachlorethen). Die in den RKS 10 sowie 12 bis 14 nachgewiesenen Gehalte an AKW liegen, ebenfalls nur in Spuren, im Bereich von 0,03 bis 0,05 mg/m³ vor. Beim Messpunkt RKS 11 wurden 0,11 mg/m³ gemessen. Hauptparameter sind Toluol und Xylole.

Für eine Gefährdung über den Wirkungspfad Boden-Bodenluft-Mensch ergaben die Bodenluft- und Deponiegas-Messergebnisse keine Hinweise.

4.3.2 Wirkungspfad Boden-Mensch

Auf der Teilfläche IV wurden aus vier Bereichen (A, B, C und D) Bodenmischproben aus den oberen 0,1 m entnommen (MP1). Alle Mischproben wurden auf die Parameter nach BBodSchV, Anhang 2, Kapitel 1.4 analysiert. Die Ergebnisse sind in **Fehler! Verweisquelle konnte nicht gefunden werden.** aufgeführt, gemeinsam mit den Bewertungskriterien (Prüfwerte) nach BBodSchV für Park- und Freizeitanlagen [U 2] sowie nach dem Merkblatt ALEX 02 für den orientierenden Prüfwert oPW2 [U 4].

Tabelle 1: Ergebnisse und Bewertung der Bodenmischproben gemäß BBodSchV [U 2] und ALEX 02 [U 4]

	Prüf- wert gem. [U 2]	oPW2 gem. [U 4]
Arsen	[mg/kg] 125	[mg/kg] 60
Blei	1.000	500
Cadmium	50	10
Cyanide	50	50
Chrom	1.000	200
Nickel	350	200
Queck- silber	50	10
Aldrin	10	-
B(a)P	10	-
DDT	200	-
Hexachlor- benzol	20	ı
Hexachlor- cyclohexan	25	-
Pentachlor- phenol	250	-
PCB(6)	2	1
PAK 1-16	-	20
PAK 11-16	-	1

FI. IV A MP1	FI. IV B MP1	FI. IV C MP1	FI. IV D MP1
0-0,1 m u. GOK	0-0,1 m u. GOK	0-0,1 m u. GOK	0-0,1 m u. GOK
[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
9,2	12,2	10,1	9,1
74	71	77	105
0,3	0,3	0,3	0,3
< 0,5	< 0,5	< 0,5	< 0,5
27	26	29	25
24	22	25	20
0,22	0,18	0,22	0,27
< 0,2	< 0,2	< 0,2	< 0,2
0,6	0,3	0,9	0,4
(n. b.*)	(n. b.*)	(n. b.*)	(n. b.*)
< 0,4	< 0,4	< 0,4	< 0,4
< 0,5	< 0,5	< 0,5	< 0,5
< 0,05	< 0,05	< 0,05	< 0,05
(n. b.*)	0,02	(n. b.*)	(n. b.*)
6,37	3,48	11	3,64
2,18	1,4	3,5	1,56

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden.

Überschreitung der Prüfwerte nach BBodSchV

Überschreitung der Prüfwerte nach ALEX 02

Überschreitungen in den Bodenproben gibt es nur für die Parameter PAK 11-16 in den Flächen A bis D (1,4 bis 3,5 mg/kg). Bei den übrigen Analysen werden die Prüfwerte nach [U 2] und [U 4] eingehalten. Bei den Parametern PAK 11-16 handelt es sich um die wenig mobilen, schwer wasserlöslichen Einzelparameter der PAK. In der BBodSchV [U 2] finden diese Summenwerte auch keine Berücksichtigung. Mit einer Gefährdung über den Wirkungspfad Boden-Mensch ist daher und wegen der geringen Überschreitungen nicht zu rechnen.

4.3.3 Wirkungspfad Boden-Grundwasser

RKS 12 wurde zu einem 2"-Grundwasserpegel P2 ausgebaut und in 4,5 m u. ROK eine Grundwasserprobe entnommen. Die Ergebnisse der chemischen Analytik sind in Tabelle 2 aufgeführt.

Tabelle 2: Ergebnisse der Grundwasseranalysen, Bewertet nach dem orientierenden Prüfwert oPW gemäß ALEX 02 [U 4]

Parameter	Einheit	oPW
Temperatur	°C	15
Abdampfrückstand	mg/l	1500
EL-Leitf. bei 25 °C	μS/cm	2000
pH-Wert		6,5 bis 9,5
Sauerstoffgehalt	mg/l	2
Ammonium (NH4+)	mg/l	0,5
Calcium	mg/l	200
Chlorid	mg/l	100
Cyanid (gesamt)	mg/l	0,05
Kalium	mg/l	5
Natrium	mg/l	150
Magnesium	mg/l	50
Nitrat als NO3 ⁻	mg/l	50
Sulfat	mg/l	240
Arsen	mg/l	0,04
Blei	mg/l	0,04
Cadmium	mg/l	0,005
Chrom (gesamt)	mg/l	0,05
Kupfer	mg/l	0,1
Nickel	mg/l	0,04
Quecksilber	mg/l	0,0005
Zink	mg/l	0,3
Mineralöl-KW	mg/l	0,1
DOC	mg/l	4,0
LHKW incl. VC	μg/l	10
PAK 1-16	μg/l	0,5
PAK 11-16	μg/l	0,2
AKW	μg/l	20

RKS 12/P2
13,4
700
1073
6,98
0,79
< 0,06
173
39
< 0,005
7,48
23,9
20,1
< 1,0
121
0,003
0,008
< 0,0002
< 0,001
0,003
0,002
< 0,0001
0,073
< 0,1
6,0
(n.b.*)
40,40
11,30
(n.b.*)

n.b.*: nicht bestimmbar, da Einzelparameter unterhalb der Bestimmungsgrenze

Überschreitungen der Prüfwerte gemäß ALEX 02 [U 4] ergaben sich bei den Parametern Kalium und DOC, die in den gemessenen Konzentrationen toxikologisch nicht relevant

sind. Dagegen ergaben sich erhebliche Überschreitungen des oPW2 beim Summenparameter der polycyclischen aromatischen Kohlenwasserstoffe (PAK nach EPA-Liste 1-16) um den Faktor 80 und für die Parameter PAK 11-16 um den Faktor 56. Es ergeben sich somit Hinweise für eine Gefährdung über den Wirkungspfad Boden-Grundwasser bezogen auf den Summenparameter PAK.

5 ZUSAMMENFASSENDE BEWERTUNG

Im Rahmen des B-Plan-Verfahrens der Stadt Speyer wurde auf der öffentlichen Grünfläche IV, die im Bereich der Altablagerung "Am Russenweiher" liegt, zur Gefährdungsabschätzung der Schutzgüter Mensch, Bodenluft-Boden, Grundwasser eine orientierende umwelttechnische Untersuchung gemäß BBodschV und ALEX Rheinland-Pfalz durchgeführt.

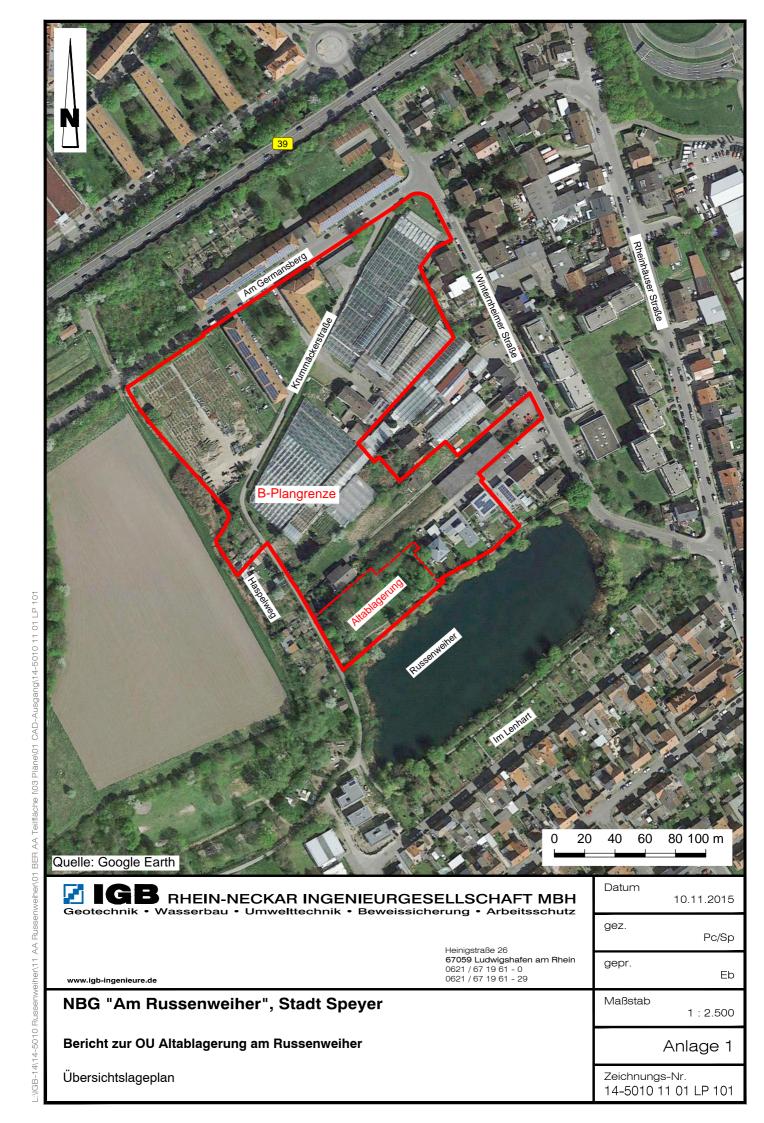
Die Altablagerung "Am Russenweiher" mit der Registriernummer 318 00 000 – 241 befindet sich größtenteils auf dem Flurstück 3765/21. Gemäß dem Altablagerungskataster von Rheinland-Pfalz [U 10] wurden dort von ca. 1955 bis 1969 Erdaushub und Bauschuttmaterialien sowie Siedlungsabfälle abgelagert. Die Ablagerungsfläche beträgt ca. 5.000 m². Nach Angaben der Stadt Speyer wurde der angrenzende Russenweiher im Jahre 1981 entschlammt und das Material auf die umliegenden Flächen verteilt.

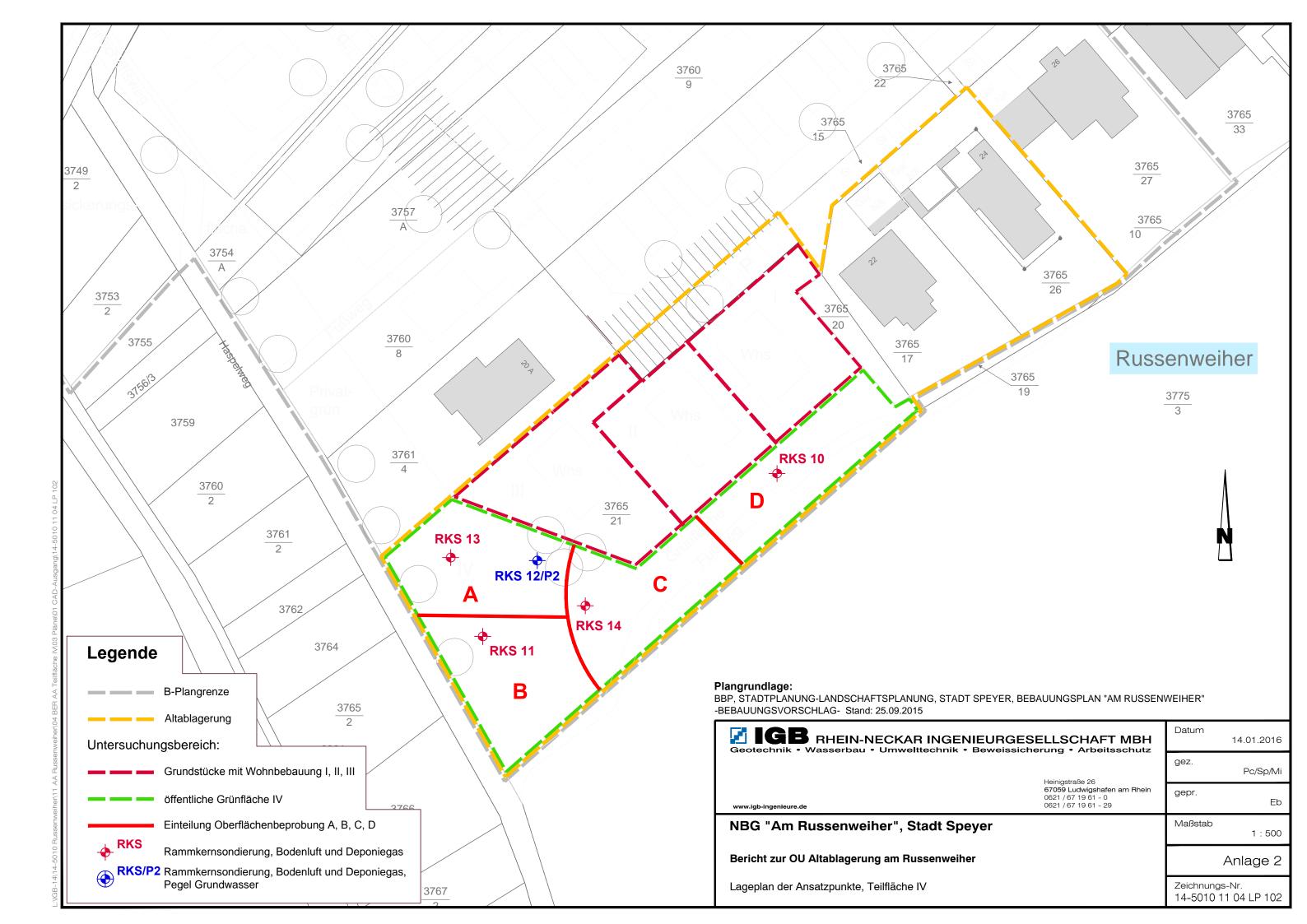
Die durchgeführte orientierende Untersuchung auf der Teilfläche IV ergab keine Hinweise auf eingelagerte Schlammablagerungen vom angrenzenden Russenweiher. Die vorgefundene Auffüllung hat eine Mächtigkeit von ca. 1,8 bis 4,3 m. Die Auffüllung besteht im Wesentlichen aus Erdaushub (schluffig, sandige Kiese) mit Anteilen von mineralischem Bauschutt (Ziegel- und Betonbruchstücke). Außer den angetroffenen Glasscherben bei RKS 12/P2 im Tiefenbereich von 2,9 m bis 4,0 m u. GOK ergaben sich bei den anderen Aufschlusspunkten keine Hinweise auf darin eingelagerte Siedlungsabfälle (Hausmüll und hausmüllähnliche Stoffe).

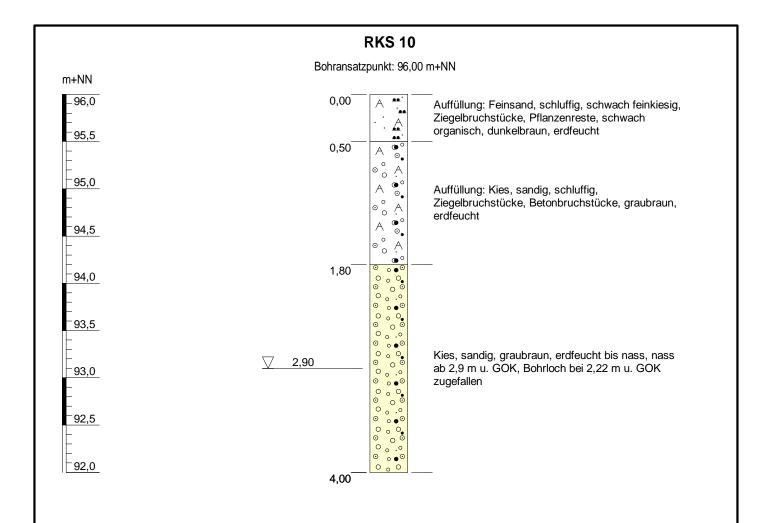
Eine Bewertung der Wirkungspfade Boden-Bodenluft-Mensch und Boden-Mensch (Nutzung Park- und Freizeitanlage) anhand der Vorgaben der Bundesbodenschutzverordnung (BBodSchV) [U 2] und ALEX Rheinland-Pfalz [U 4] ergab keine Hinweise auf Gefährdungen. Dabei merken wir an, dass es sich bei der durchgeführten orientierenden Erkundung um stichprobenartige Untersuchungen handelte.

Dagegen ergaben sich bei der erstmaligen Beprobung des oberflächennahen Grundwassers bei P2 erhebliche Überschreitungen des oPW2 beim Summenparameter der polycyclischen aromatischen Kohlenwasserstoffe (PAK nach EPA-Liste). Somit ist eine schädliche Bodenveränderung in der gesättigten Zone nach BBodSchV und ALEX im Bereich P2 nicht auszuschließen.

Zur Verifizierung des PAK-Messergebnisses im Grundwasser aus dem Pegel P2 empfehlen wir die Durchführung einer zweiten Beprobung. Dabei sollen 2 Grundwasserproben entnommen werden; eine Wasserprobe ohne Abpumpen (sog. Ist-Zustand) und eine Wasserprobe nach ca. 2-stündigem Abpumpen. Werden die erstmals festgestellten erheblichen Prüfwertüberschreitungen im Grundwasser bei P2 bestätigt und somit ein hinreichender Verdacht auf eine schädliche Bodenveränderung in der gesättigten Zone festgestellt, ist gemäß BBodSchV und ALEX im nächsten Schritt eine Detailuntersuchung durchzuführen.


IGB Rhein-Neckar Ingenieurgesellschaft mbH


i.A. M. Sc. Katharina Storz



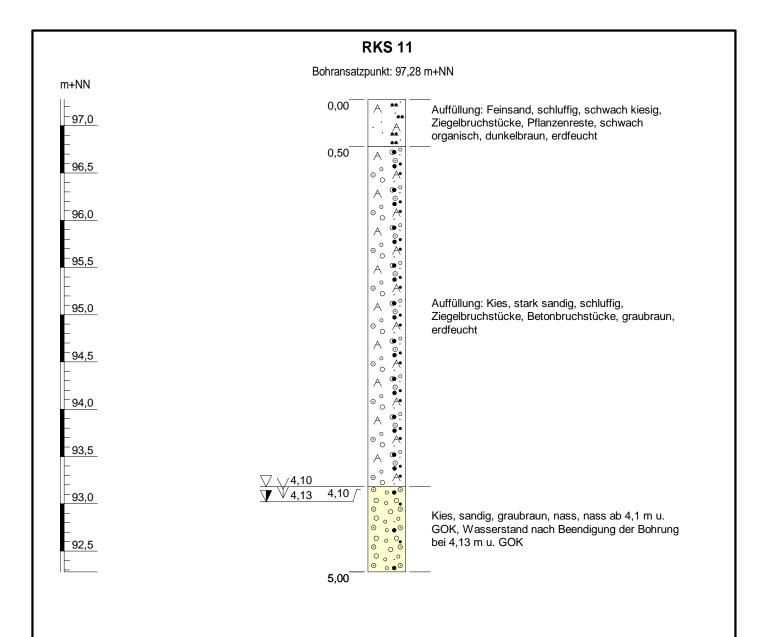
ANLAGENVERZEICHNIS

Anlage 1	Übersichtsplan
Anlage 2	Lageplan der Ansatzpunkte
Anlage 3	Sondierprofile und Schichtenverzeichnisse, Ausbauplan Grundwasserpegel
Anlage 4	Probenahmeprotokolle (Bodenluft, Boden & Grundwasser)
Anlage 5	Analysenergebnisse
Anlage 6	Vermessungsergebnisse
Anlage 7	Protokoll Kampfmittelfreimessung

NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023

	Datum	Name	Projekt-Nr.: 1510CF	
Gez.	03.11.2015	P. Schumacher		
Bearb.	29.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40	
Gepr.				
Ges.			Blattgröße: DIN A4	


IGB Ingenieurgesellschaft mbH

WST-GmbH

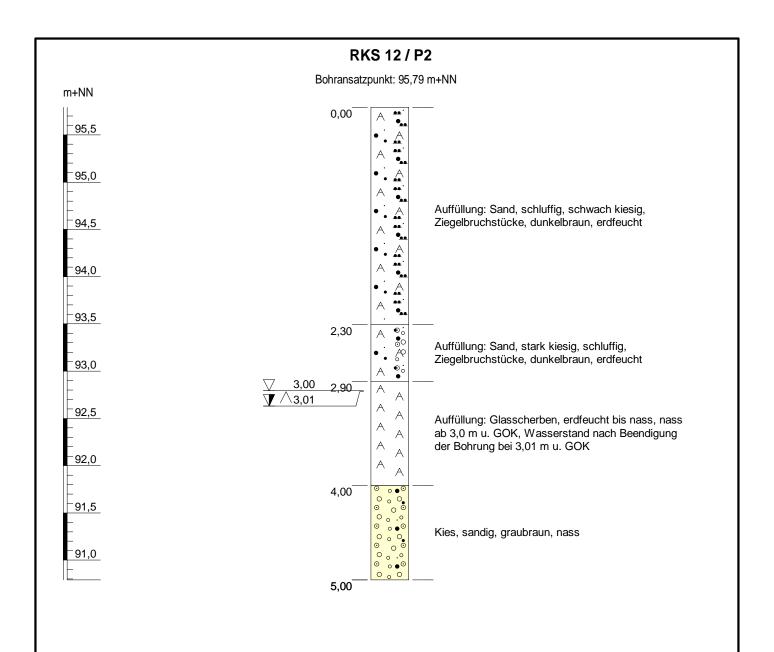
Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023

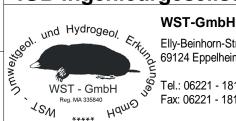
	Datum	Name	Projekt-Nr.: 1510CF
Gez.	03.11.2015	P. Schumacher	
Bearb.	29.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40
Gepr.			
Ges.			Blattgröße: DIN A4


IGB Ingenieurgesellschaft mbH

WST-GmbH

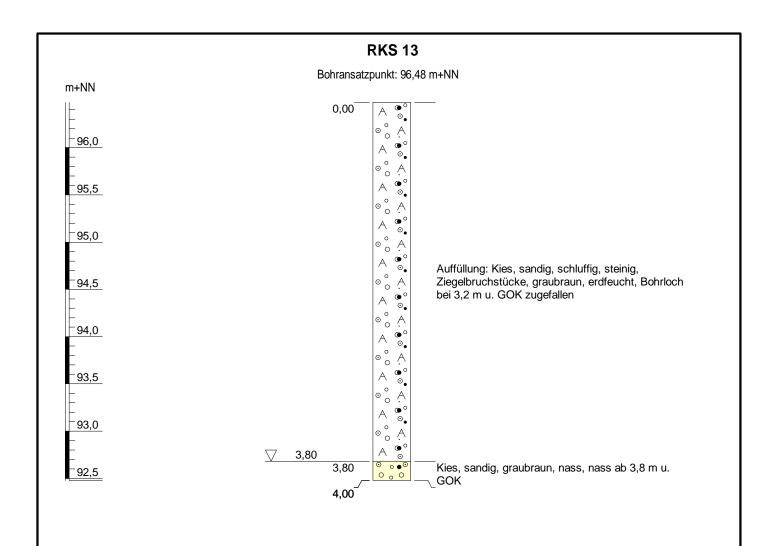
Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784



NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023


	Datum	Name	Projekt-Nr.: 1510CF
Gez.	04.11.2015	P. Schumacher	
Bearb.	28.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40
Gepr.			
Ges.			Blattgröße: DIN A4

IGB Ingenieurgesellschaft mbH

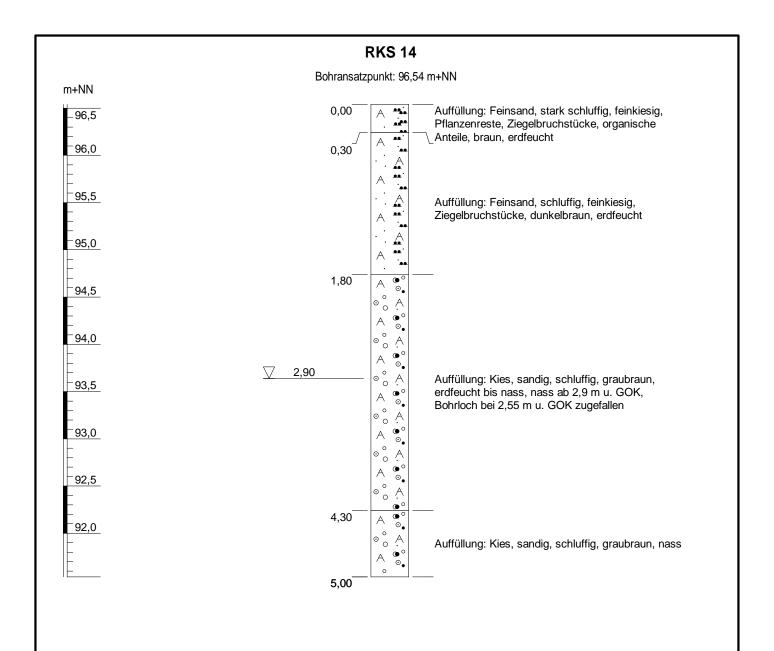
Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023

	Datum	Name	Projekt-Nr.: 1510CF
Gez.	04.11.2015	P. Schumacher	
Bearb.	28.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40
Gepr.			
Ges.			Blattgröße: DIN A4


IGB Ingenieurgesellschaft mbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023

	Datum	Name	Projekt-Nr.: 1510CF
Gez.	04.11.2015	P. Schumacher	
Bearb.	28.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40
Gepr.			
Ges.			Blattgröße: DIN A4

IGB Ingenieurgesellschaft mbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

Name d. Auftraggebers: IGB Ingenieurgesellschaft mbH
Bohrverfahren: RKS Datum: 29.10.2015
Durchmesser: 80/60 mm Neigung: 0,00°

Projekt: NBG Russenweiher, Altablagerung Speyer

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

Seite: 1 von 1

WST - GmbH 45 No. 10 No

Aufschluss: RKS 10

Projektnr.: 1510CF

		1		Bomano		at2paritti 00,00 iii iiiii	
1	2	3	4	5	6	7	
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe	Beschreibung der Probe	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen: - Wasserführung	
m	g	Kalk- gehalt	- Konsistenz, Plastizität, Härte, einachsige Festigkeit	- Bohrbarkeit/Kernform	- Тур	- Bohrwerkzeuge/Verrohrung	
			- Kornform, Matrix	- Meißeleinsatz	- Nr.	- Kernverlust	
	Geol. Benennung (Stratigraphie)		- Verwitterung	- Beobachtungen usw.	- Tiefe	- Kernlänge	
0,50	Auffüllung: Feinsand, schluffig, schwach feinkiesig - Ziegelbruchstücke, Pflanzenreste, schwach organisch	dunkelbraun	erdfeucht				
1,80	Auffüllung: Kies, sandig, schluffig - Ziegelbruchstücke, Betonbruchstücke	graubraun	erdfeucht				
4,00	Kies, sandig	graubraun	erdfeucht bis nass	Bohrloch bei 2,22 m u. GOK zugefallen		nass ab 2,9 m u. GOK	

Name d. Auftraggebers: IGB Ingenieurgesellschaft mbH Bohrverfahren: RKS Datum: 29.10.2015

Projekt: NBG Russenweiher, Altablagerung Speyer

Durchmesser: 80/60 mm Neigung: 0,00°

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

Seite: 1 von 1

Aufschluss: RKS 11

Projektnr.: 1510CF

Name & Unterschrift des qualifizierten Technikers: A. Dirschka, Dipl.-Geol.

Bohransatzpunkt: = 97,28 m +NN

1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe	Beschreibung der Probe	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen: - Wasserführung
m		Kalk- gehalt	- Konsistenz, Plastizität, Härte, einachsige Festigkeit	- Bohrbarkeit/Kernform	- Тур	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr.	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung	- Beobachtungen usw.	- Tiefe	- Kernlänge
0,50	Auffüllung: Feinsand, schluffig, schwach kiesig - Ziegelbruchstücke, Pflanzenreste, schwach organisch	dunkelbraun	erdfeucht			
4,10	Auffüllung: Kies, stark sandig, schluffig - Ziegelbruchstücke, Betonbruchstücke	graubraun	erdfeucht			
5,00	Kies, sandig	graubraun	nass			nass ab 4,1 m u. GOK, Wasserstand nach Beendigung der Bohrung bei 4,13 m u. GOK

Name d. Auftraggebers: IGB Ingenieurgesellschaft mbH Bohrverfahren: RKS Datum: 28.10.2015 Durchmesser: 80/60 mm Neigung: 0,00°

Projekt: NBG Russenweiher, Altablagerung Speyer

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

Seite: 1 von 1

WST - GmbH 180 MA 335800 HquiD

Aufschluss: RKS 12 / P2

Projektnr.: 1510CF

		Traine a ontersonnit des quannizierten Teorinikers.7t. Birsonka, Bipi. Geoi.			Domansatzpunkt. = 35,73 m +1414		
1	2	3	4	5	6	7	
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk-	Beschreibung der Probe - Konsistenz, Plastizität, Härte,	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen: - Wasserführung	
m		gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Тур	- Bohrwerkzeuge/Verrohrung	
			- Kornform, Matrix	- Meißeleinsatz	- Nr.	- Kernverlust	
	Geol. Benennung (Stratigraphie)		- Verwitterung	- Beobachtungen usw.	- Tiefe	- Kernlänge	
2,30	Auffüllung: Sand, schluffig, schwach kiesig - Ziegelbruchstücke	dunkelbraun	erdfeucht				
2,90	Auffüllung: Sand, stark kiesig, schluffig - Ziegelbruchstücke	dunkelbraun	erdfeucht				
4,00	Auffüllung: Glasscherben		erdfeucht bis nass			nass ab 3,0 m u. GOK, Wasserstand nach Beendigung der Bohrung bei 3,01 m u. GOK	
5,00	Kies, sandig	graubraun	nass				

Name d. Auftraggebers: IGB Ingenieurgesellschaft mbH Bohrverfahren: RKS Datum: 28.10.2015 Durchmesser: 80/60 mm Neigung: 0,00°

Projekt: NBG Russenweiher, Altablagerung Speyer

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

Seite: 1 von 1

WST - GmbH Jan Magney Hau

Aufschluss: RKS 13

Projektnr.: 1510CF

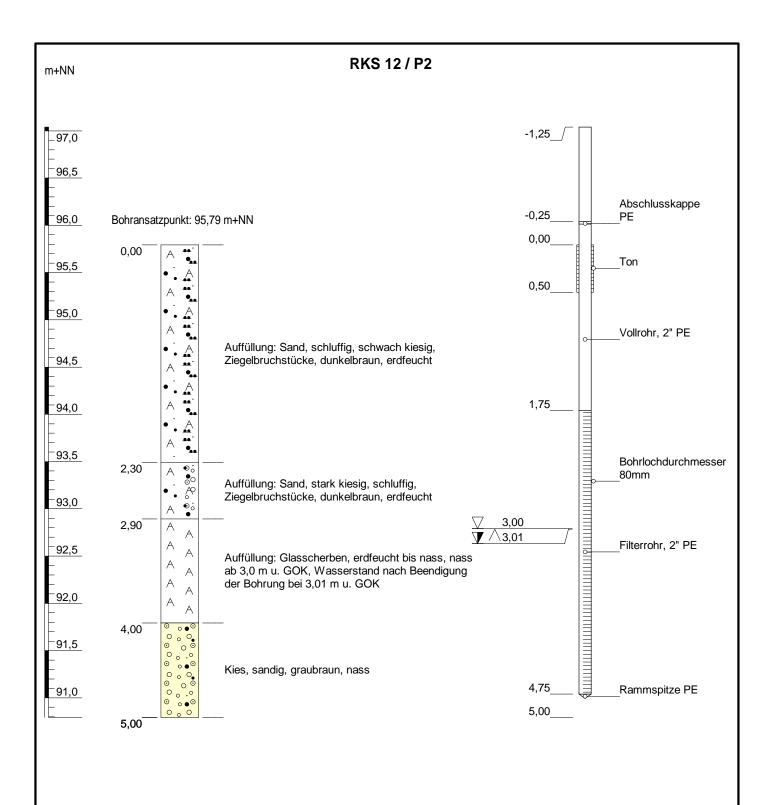
Name & Unterschrift des qualifizierten	Technikers: A. Dirschka, DiplGeol.	Bohransatzpunkt: = 96,48 m +NN
riamo a omorosmir aco quamizionen	recimination and English and English	Bornarioatzparikt. – 50,40 m 11414

1				2011 a 10 a 2 par 10 a 10		12 parinti 00, 10 111 11111
1	2	3	4	5	6	7
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe - Konsistenz, Plastizität, Härte, einachsige Festigkeit - Kornform, Matrix - Verwitterung	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr Tiefe	Bemerkungen: - Wasserführung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge
3,80	Auffüllung: Kies, sandig, schluffig, steinig - Ziegelbruchstücke	graubraun	erdfeucht	Bohrloch bei 3,2 m u. GOK zugefallen		
4,00	Kies, sandig	graubraun	nass			nass ab 3,8 m u. GOK

Name d. Auftraggebers: IGB Ingenieurgesellschaft mbH Bohrverfahren: RKS Datum: 28.10.2015 Durchmesser: 80/60 mm Neigung: 0,00°

Projekt: NBG Russenweiher, Altablagerung Speyer

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

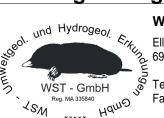

Seite: 1 von 1

Aufschluss: RKS 14

Projektnr.:

1510CF Bohransatzpunkt: = 96.54 m + NN

Projekt. NDG Kussenweiner, Altabiagerung Speyer		Name & Unterschrift des qualifizierten Technikers:A. Dirschka, DiplGeol.			Bohransatzpunkt: = 96,54 m +NN		
1	2	3	4	5	6	7	
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe - Konsistenz, Plastizität, Härte, einachsige Festigkeit - Kornform, Matrix - Verwitterung	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr Tiefe	Bemerkungen: - Wasserführung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge	
0,30	Auffüllung: Feinsand, stark schluffig, feinkiesig - Pflanzenreste, Ziegelbruchstücke, organische Anteile	braun	erdfeucht				
1,80	Auffüllung: Feinsand, schluffig, feinkiesig - Ziegelbruchstücke	dunkelbraun	erdfeucht				
4,30	Auffüllung: Kies, sandig, schluffig	graubraun	erdfeucht bis nass	Bohrloch bei 2,55 m u. GOK zugefallen		nass ab 2,9 m u. GOK	
5,00	Auffüllung: Kies, sandig, schluffig	graubraun	nass				



NBG Russenweiher, Altablagerung Speyer

Sondierprofil nach DIN 4023

	Datum	Name	Projekt-Nr.: 1510CF
Gez.	04.11.2015	P. Schumacher	
Bearb.	28.10.2015	A. Dirschka, DiplGeol.	Maßstab: 1:40
Gepr.			
Ges.			Blattgröße: DIN A4

IGB Ingenieurgesellschaft mbH

WST-GmbH

Elly-Beinhorn-Str.6 69124 Eppelheim

Tel.: 06221 - 181780 Fax: 06221 - 181784

	Probenahi	meprotokoll Bodenlu	ft	
 Adsorption auf Aktivkohle/l Adsorption auf XAD-4-Harz 	latt 2: punktuell/horizontiert <u>/inte</u> Messung mit direkt anze z, diffuser Tiefenbereich n Bohrlochtiefsten, punkt	egrierend über Bohrlochlänge eigendem Prüfröhrchen integrierend n tuell/horizontiert/integrierend über E	d über Bohrlochlänge	1510CF X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druc	RKS 10 / BL NBG Russenweiher Alt Speyer IGB Ingenieurgesellsch 29.10.2014 k/Temp./rel.Luftfeuchte)	Landkreis:	13:48	
Orientierende Messung: Bodenbeschreibung nach DIN	Quantitativ Örtliche Ve Lokalisieru	ung Schadstoffquelle:		
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [m]: Sondenteilstücke Länge [m]: Totvolumen der Sonde [Liter] Verhältnis Volumen Sonde/B	SKC Aircheck Sampler Dichtkegel dicht	Bohrwerkzeug: h Durchmesser Messstelle [mm]: 3	temp. 1,5" O-Flur/1x Vollro hydraulisches Bohrgerät 38,1 1,8	ohr/1x Filterro
Entnahmeart: Entnahmetiefe: Bedingungen konstant währe	einfach: x integrierend (von-bis) : horizontiert: m u. ROK end Probenahme:	Teufen:		
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor de Dauer der Absaugung für Pro Probenvolumen: Gesamtes entnommenes Vol	1 10 er Probenahm 10 obenahme: 5 5 5	· · ·	alkenpume <u>:</u>	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase		Medium: Aktivkohle Sonstiges: Messwert: Messwert: CO ₂ : 3,90% O ₂ : 17,30%	(5 Liter) CH ₄ : n.n. H ₂ S: n.n.	
Probentransport (Ziel/Beding Probenlagerung (Ort/Zeitraun Probenehmer/Qualifikation: Bemerkungen:		Probentransport dunke keine A. Dirschka, DiplGeo		

		meprotokoli i	ouemuit		
Varianten nach VDI 3865 Bla 1. Adsorption auf Aktivkohle p 2. Adsorption auf Aktivkohle/N 3. Adsorption auf XAD-4-Harz 4. Kleinmengenentnahme am 5. Direktmessung, punktuell/h	ounktuell/horizontiert <u>/inte</u> Messung mit direkt anze z, diffuser Tiefenbereich n Bohrlochtiefsten, punkt	eigendem Prüfröhrche ı tuell/horizontiert <u>/</u> integi	n integrierend über Borierend über Borierend über Bohrloch	_	1510CF X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck	RKS 11 / BL NBG Russenweiher Alt Speyer IGB Ingenieurgesellsch 29.10.2014 k/Temp./rel.Luftfeuchte)	haft mbH	_ Landkreis: _ Auftragnehmer: _ Uhrzeit: 1018 hPa, 11 °C, 94 %	kreisfrei WST-GmbH 8:45 6, schwach wind	lig
Orientierende Messung: Bodenbeschreibung nach DIN	Quantitativ Örtliche Ve Lokalisieru	ung Schadstoffquelle:	x x x		
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [missondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bo	Dichtkegel dicht 12 1,2 : 0,136	Art/Ausführung/Durch Bohrwerkzeug: Durchmesser Messs Ausbautiefe der Mess Anzahl [Stck.]:	hydraulis telle [mm]: 38,1	5" O-Flur/1x Voll ches Bohrgerät 	
Entnahmeart: Entnahmetiefe: Bedingungen konstant währe	einfach: x integrierend (von-bis): horizontiert: m u. ROK nd Probenahme:	: <u>0 - 3,9 m</u> Teufen:	K Temperatur Boden	punktuell:°(-
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor de Dauer der Absaugung für Pro Probenvolumen: Gesamtes entnommenes Vol	10 er Probenahm	Liter / min min Liter min Liter Liter	Hubzahl Balkenpum	ne:	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase		Medium: Sonstiges Messweri Messweri CO ₂ : O ₂ :	t:		
Probentransport (Ziel/Bedingu Probenlagerung (Ort/Zeitraum Probenehmer/Qualifikation: Bemerkungen:		keine	ansport dunkel lka, DiplGeol.		

	<u> </u>	meprotokoli	Roaeuinit		
Varianten nach VDI 3865 Bla 1. Adsorption auf Aktivkohle p 2. Adsorption auf Aktivkohle/N 3. Adsorption auf XAD-4-Harz 4. Kleinmengenentnahme am 5. Direktmessung, punktuell/h	att 2: punktuell/horizontiert <u>/int</u> Messung mit direkt anze z, diffuser Tiefenbereich n Bohrlochtiefsten, punk	tegrierend über Bohrl eigendem Prüfröhrch n ktuell/horizontiert/inte	lochlänge nen integrierend über B grierend über Bohrloch	_	1510CF X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck	RKS 12 / BL NBG Russenweiher Al Speyer IGB Ingenieurgesellsch 28.10.2014 k/Temp./rel.Luftfeuchte)	chaft mbH	Landkreis: Auftragnehmer: Uhrzeit:	kreisfrei WST-GmbH 13:18 n windig	
Orientierende Messung:	Quantitativ Örtliche Vo Lokalisieru	ung Schadstoffquelle	X		
Bodenbeschreibung nach DIN	N EN ISO 14688-1/KA5:	s. Bohrprotokoll			
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [mr Sondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bo	1,2 : 0,136	Art/Ausführung/Dur Bohrwerkzeug: Durchmesser Mess Ausbautiefe der Me Anzahl [Stck.]:	hydraulisstelle [mm]: 38,1	.5" O-Flur/1x Vol sches Bohrgerät 	
Entnahmeart:	einfach: x integrierend (von-bis) : horizontiert:	_ mehrfac : <u>0 - 2,8 m</u> Teufen:	ch:	punktuell:_	
Entnahmetiefe: Bedingungen konstant währer	m u. ROK		OK Temperatur Boder	າ :°	°C
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor de Dauer der Absaugung für Pro Probenvolumen: Gesamtes entnommenes Vol	10 er Probenahm 10 bbenahme: 5 5	_ Liter / min 0 min 0 Liter 5 min 6 Liter 6 Liter	Hubzahl Balkenpur	me:	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase		Medium Sonstige Messwe Messwe CO ₂ : O ₂ :	ert:		
Probentransport (Ziel/Bedingu	ıngen):	Probent	transport dunkel		
Probenlagerung (Ort/Zeitraum Probenehmer/Qualifikation: Bemerkungen:		keine A. Dirsc	chka, DiplGeol.		

	Probenahi	meprotokoli i	Bodeniuft		
Varianten nach VDI 3865 Bla 1. Adsorption auf Aktivkohle p 2. Adsorption auf Aktivkohle/N 3. Adsorption auf XAD-4-Harz 4. Kleinmengenentnahme am 5. Direktmessung, punktuell/h	att 2: bunktuell/horizontiert <u>/inte</u> Messung mit direkt anze z, diffuser Tiefenbereich n Bohrlochtiefsten, punkt	egrierend über Bohrlo eigendem Prüfröhrche tuell/horizontiert/integ	ochlänge en integrierend über Bo rierend über Bohrlochl	_	1510CF X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck	RKS 13 / BL NBG Russenweiher Algebrasen Alg	haft mbH	_ Landkreis: _ Auftragnehmer: _ Uhrzeit: 1012 hPa, 11 °C, 77 %	kreisfrei WST-GmbH 15:23 5, schwach wind	lig
Orientierende Messung: Bodenbeschreibung nach DIN	Quantitativ Örtliche Ve Lokalisieru	ung Schadstoffquelle:	X X		
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [mr Sondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bo	RKS 13 / BL SKC Aircheck Sampler Dichtkegel dicht m]: 12 1,2 1,2 1,0,136	Art/Ausführung/Durc Bohrwerkzeug: Durchmesser Messs Ausbautiefe der Mes	hydraulise stelle [mm]: 38,1	" O-Flur/1x Voll ches Bohrgerät 	
Entnahmeart: Entnahmetiefe: Bedingungen konstant währer	einfach: x integrierend (von-bis): horizontiert: m u. ROK nd Probenahme:	: <u>0 - 3 m</u> Teufen:	n: K Temperatur Boden	punktuell: :°(<u> </u>
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor de Dauer der Absaugung für Pro Probenvolumen: Gesamtes entnommenes Volumen	10 er Probenahm 10 bbenahme: 5 5	Liter / min min Liter min Liter Liter	Hubzahl Balkenpum	e:	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase		Medium: Sonstiges Messwer Messwer CO ₂ : O ₂ :	rt:	- - - : n.n.	
Probentransport (Ziel/Bedingu Probenlagerung (Ort/Zeitraum Probenehmer/Qualifikation: Bemerkungen:	· ,	keine	ansport dunkel nka, DiplGeol.		

		meprotokoli E	ouemuit		
Varianten nach VDI 3865 Bla 1. Adsorption auf Aktivkohle p 2. Adsorption auf Aktivkohle/N 3. Adsorption auf XAD-4-Harz 4. Kleinmengenentnahme am 5. Direktmessung, punktuell/h	punktuell/horizontiert <u>/inte</u> Messung mit direkt anze z, diffuser Tiefenbereich n Bohrlochtiefsten, punkt	eigendem Prüfröhrcher ı tuell/horizontiert <u>/</u> integri	n integrierend über I ierend über Bohrloc		1510CF X
Probe: Projekt: Stadt/Gemeinde: Auftraggeber: Probenahmedatum: Witterung/Wetterdaten (Druck	RKS 14 / BL NBG Russenweiher Alt Speyer IGB Ingenieurgesellsch 28.10.2014 k/Temp./rel.Luftfeuchte)	haft mbH	_Landkreis: _Auftragnehmer: _Uhrzeit: 1 °C, 77 %, schwac	kreisfrei WST-GmbH 14:50 ch windig	
Orientierende Messung: Bodenbeschreibung nach DIN	Quantitativ Örtliche Ve Lokalisieru	ung Schadstoffquelle:	x x		
Probenahmestelle: Probenahmeapparatur: Abdichtung: Dichtigkeitsprüfung: Durchmesser Bolu-Sonde [missondenteilstücke Länge [m]: Totvolumen der Sonde [Liter]: Verhältnis Volumen Sonde/Bo	Dichtkegel dicht m]: 12 1,2 1: 0,136	Art/Ausführung/Durch Bohrwerkzeug: Durchmesser Messste Ausbautiefe der Mess Anzahl [Stck.]:	hydraul elle [mm]: 38,1	I,5" O-Flur/1x Volli lisches Bohrgerät	
Entnahmeart: Entnahmetiefe: Bedingungen konstant währe	einfach: x integrierend (von-bis): horizontiert: m u. ROK nd Probenahme:	: <u>0 - 2,5 m</u> Teufen:	:	punktuell:°(3
Förderstrom: Pumpzeit vor Probenahme: Abgesaugtes Volumen vor de Dauer der Absaugung für Pro Probenvolumen: Gesamtes entnommenes Vol	10 er Probenahm	Liter / min min Liter min min Liter Liter Liter	Hubzahl Balkenpu	ime <u>:</u>	
Art der Probensammlung: Adsorptionsröhrchen: Headspace: Direktmessung Prüfröhrchen: Direktmessung PID: Direktmessung Deponiegase		Medium: Sonstiges: Messwert: Messwert: CO ₂ : O ₂ :	:	H ₄ : n.n.	
Probentransport (Ziel/Bedingu Probenlagerung (Ort/Zeitraum Probenehmer/Qualifikation: Bemerkungen:		keine	nsport dunkel ka, DiplGeol.		

Probenbezeichnung:	Fläche IV A MP1
Projekt:	NBG Russenweiher Altablagerung, Speyer
Zeitpunkt der Probenahme:	30.10.2015
Zweck der Probenahme:	nähere Erkundung
Herkunft des Materials:	Anthropogene Auffüllung
Art der Probennahme:	Oberflächenprobenahme Drehbohrstock
Anzahl der Einzelproben:	20 Einstiche von 0,0-0,1 m
Entnahmegerät:	Drehbohrstock
Bodenart:	Feinsand, stark schluffig, schwach feinkiesig, organische Anteile
Farbe / Geruch:	braun
Feuchte / Konsistenz:	erdfeucht
Probenmenge:	5 Liter
Probenbehälter:	5 Liter-Eimer
Probenkonservierung:	nein
beprobte Fläche:	Fläche IV
Witterung:	bewölkt, 1013 hPa, 10 °C, 82 %, schwach windig
Ausführende Firma:	WST GmbH
Probenehmer:	A. Dirschka, DiplGeol.
Sonstiges / Bemerkungen: Pflanzenreste, Ziegelbruchstücke	Foto von der Untersuchungsfläche: siehe Lageplan

	, N **** Ha
Probenbezeichnung:	Fläche IV B MP1
Projekt:	NBG Russenweiher Altablagerung, Speyer
Zeitpunkt der Probenahme:	30.10.2015
Zweck der Probenahme:	nähere Erkundung
Herkunft des Materials:	Anthropogene Auffüllung
Art der Probennahme:	Oberflächenprobenahme Drehbohrstock
Anzahl der Einzelproben:	20 Einstiche von 0,0-0,1 m
Entnahmegerät:	Drehbohrstock
Bodenart:	Feinsand, stark schluffig, schwach feinkiesig, organische Anteile
Farbe / Geruch:	braun
Feuchte / Konsistenz:	erdfeucht
Probenmenge:	5 Liter
Probenbehälter:	5 Liter-Eimer
Probenkonservierung:	nein
beprobte Fläche:	Fläche IV
Witterung:	bewölkt, 1013 hPa, 10 °C, 82 %, schwach windig
Ausführende Firma:	WST GmbH
Probenehmer:	A. Dirschka, DiplGeol.
Sonstiges / Bemerkungen: Pflanzenreste, Ziegelbruchstücke	Foto von der Untersuchungsfläche: siehe Lageplan

	, N **** Ha
Probenbezeichnung:	Fläche IV C MP1
Projekt:	NBG Russenweiher Altablagerung, Speyer
Zeitpunkt der Probenahme:	30.10.2015
Zweck der Probenahme:	nähere Erkundung
Herkunft des Materials:	Anthropogene Auffüllung
Art der Probennahme:	Oberflächenprobenahme Drehbohrstock
Anzahl der Einzelproben:	20 Einstiche von 0,0-0,1 m
Entnahmegerät:	Drehbohrstock
Bodenart:	Feinsand, stark schluffig, schwach feinkiesig, organische Anteile
Farbe / Geruch:	braun
Feuchte / Konsistenz:	erdfeucht
Probenmenge:	5 Liter
Probenbehälter:	5 Liter-Eimer
Probenkonservierung:	nein
beprobte Fläche:	Fläche IV
Witterung:	bewölkt, 1013 hPa, 10 °C, 82 %, schwach windig
Ausführende Firma:	WST GmbH
Probenehmer:	A. Dirschka, DiplGeol.
Sonstiges / Bemerkungen: Pflanzenreste, Ziegelbruchstücke	Foto von der Untersuchungsfläche: siehe Lageplan

Probenbezeichnung:	Fläche IV D MP1
Projekt:	NBG Russenweiher Altablagerung, Speyer
Zeitpunkt der Probenahme:	30.10.2015
Zweck der Probenahme:	nähere Erkundung
Herkunft des Materials:	Anthropogene Auffüllung
Art der Probennahme:	Oberflächenprobenahme Drehbohrstock
Anzahl der Einzelproben:	20 Einstiche von 0,0-0,1 m
Entnahmegerät:	Drehbohrstock
Bodenart:	Feinsand, stark schluffig, schwach feinkiesig, organische Anteile
Farbe / Geruch:	braun
Feuchte / Konsistenz:	erdfeucht
Probenmenge:	5 Liter
Probenbehälter:	5 Liter-Eimer
Probenkonservierung:	nein
beprobte Fläche:	Fläche IV
Witterung:	bewölkt, 1013 hPa, 10 °C, 82 %, schwach windig
Ausführende Firma:	WST GmbH
Probenehmer:	A. Dirschka, DiplGeol.
Sonstiges / Bemerkungen: Pflanzenreste, Ziegelbruchstücke	Foto von der Untersuchungsfläche: siehe Lageplan

Probenahmeprotokoll Wasser Z Grundwasser Oberflächenwasser Proj. Nr. 1510CF

Probenbezeichnung:	WP RKS1	2 (P2)							
Projekt:	NBG Russe	enweiher Al	tablagerunç	g, Speyer					
Stadt/Gemeinde-Ortsteil:	Speyer				Landkreis:	s: kreisfrei			
Auftraggeber:	IGB Ingenie	eurgesellsc	haft mbH	mer:	WST-GmbH				
Probenahmedatum:	30.10.15	Uhrzeit:	09:10						
Grund der Probenahme:	Grundwass	eruntersuc	hung						
Witterung/Wetterdaten (Druck	k/Temp./rel.L	_uftfeuchte/	Windstärke	teilweise so	onnig, 1026	hPa, 12 °C	c, 72%, sch	wach windig	
D 27.1.1		40	45	00	0.5				
Pumpzeit [min]:	5	10	15	20	25				
Temperatur [°C]:	13,4	13,4	13,4	13,4	13,4				
pH-Wert:	7,00	6,99	6,99	6,98	6,98				
el. Leitfähigkeit 25°C [μS/cm]: O ₂ -Gehalt [%]:	1057 10,1	1063 7,5	1067 7,4	1070 7,5	1073 7,7				
O ₂ -Gehalt [mg/l]:	1,03	0,76			0,79				
Redoxpotential _{qem.} [mV]:	-17	-42	0,75 -49	0,77 -55	-56				
Redoxpotential _H [mV]:	197	172	165	159	158				
	197	172		109	130				
Färbung:			klar farblos						
Trübung: Geruch:									
	0.020	0.000	neutral	0.000	0.000				
Absenkung u. Ruhewsp. [m]:	0,020	0,020	0,020	0,020	0,020				
Sonstige Beobachtungen: Angaben zu Messgeräten			- II - n IZ - Ii l- ni - n	l:_+_	Redox		-111/-1:1:-	.ul:_4_	
& Kalibrierung (Set "gelb"):	•		eller Kalibrier ueller Kalibı		O ₂	gemäß aktu	eller Kalibrie		
		9			- 2	9			
Probenahmestelle:	-	WP RKS12	` '		ROK:		_m+NN		
Ausbau/Material/Durchmesse	_		ur, PE, 2"						
Gangbare Messstellentiefe bi		m u. ROK		m+NN					
Filterstrecke von:	1,75	bis		m u. ROK		bis		_m+NN	
Ruhewasserspiegel:		m u.ROK		m+NN					
Wiederanstieg auf:		m u.ROK		m+NN	nach		_min ab End	·	
		m u.ROK		m+NN	nach		=	de Pumpen	
		m u.ROK		m+NN	nach		_min ab En	de Pumpen	
Entnahmegerät:	Tau	uchpumpe:	Gigant		S	chöpfgerät:			
Entnahmetiefe:	4,50	m u. ROK		m+NN					
Dauer Abpumpen:	25	min	Förderrate	Abpumpen:		0,402	m³/h		
geförderte Menge bis zur Pro	benahme :		0,168	m³		167,5	_1		
Dauer Probenahme:	5	min	Förderrate	Probenahm	ne:	0,200	_m³/h		
gesamte Fördermenge:	0,18	m³	184,2	I					
Probenbehälter/Verschluss:	5x	Glasflasch	Э	6x	Kunststofff	lasche			
		Headspace)		ml				
	1x	Schliffstopf	en	10x	Schraubve	rschluss			
Probenvolumen:	5,1 Liter	Konservier	ung:	ja					
Probenehmer/Qualifikation:	A. Dirschka,	DiplGeol.		Ben	nerkunaen:				
					3:				

Probentransport/Lagerung/Übergabe: gekühlt, dunkel, keine Lagerung, Transport zu Labor nach Probenahme

EUROFINS Umwelt West GmbH · Ndl. Speyer · Hasenpfühlerweide 16 · D-67346 Speyer

IGB Rhein-Neckar Ingenieurgesellschaft mbH Heinigstraße 26

67059 Ludwigshafen

Titel: Prüfbericht zu Auftrag 01550473

Prüfberichtsnummer: Nr. 80648005F3

Projektnummer: Nr. 80648

Projektbezeichnung: 14-5010 NBG Russenweiher, Speyer

Probenumfang: 5 Proben Probenart: Luft

Probeneingang: 31.10.2015

Prüfzeitraum: 31.10.2015 - 05.11.2015

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Nach DIN EN ISO/IEC 17025 durch die DAkkS Deutsche Akkreditierungsstelle GmbH akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkundenanlage aufgeführten Prüfverfahren.

Speyer, den 11.11.2015

Dr. Eva Siedler Prüfleiterin

Tel.: 06232 / 8767711

Nr. 80648005F3 Seite 2 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung	Bolu RKS10	Bolu RKS11	Bolu RKS12
			Labornummer	015198673	015198674	015198675
			Anreicherung [I]	5	5	5
Parameter	Einheit	BG	Methode			

Bestimmung aus der Aktivkohle-Anreicherung

Benzal mg/m³ 0,01 VDI 2100 BL 2 / VDI 3865 BL 3 (AN-LGO04) < 0,010 < 0,010 < 0,015							
Ethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 0,011 0,010 0.7010 0.	Benzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
m·/p-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,015 0,034 0,010 0-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 0,010 0,010 0,010 1,3,5-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 0,010 0,010 0,010 1,2,4-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 0,014 0,010 1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 0,010 0,010 0,010 1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010	Toluol	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	0,012	0,035	0,015
o-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010	Ethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	0,011	< 0,010
1,3,5-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,	m-/p-Xylol	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	0,015	0,034	0,013
1,2,4-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	o-Xylol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	1,3,5-Trimethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
iso-Propylbenzol (Cumol) mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010	1,2,4-Trimethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	0,014	< 0,010
n-Propylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 2-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	1,2,3-Trimethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
2-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 3-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	iso-Propylbenzol (Cumol)	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
3-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 0,015 < 0,010 4-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	n-Propylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
4-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 1,3-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	2-Ethyltoluol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,3-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 1,2-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	3-Ethyltoluol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	0,015	< 0,010
1,2-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 1,4-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	4-Ethyltoluol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Diethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,2,4,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 1,2,3,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	1,2-Diethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,2,3,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 1,2,3,4-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	1,4-Diethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,2,3,4-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 Summe AKW (ALEX 05) mg/m³ berechnet (AN-LG004) 0,027 0,109 0,028 Vinylchlorid mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	1,2,4,5-Tetramethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
Summe AKW (ALEX 05) mg/m³ berechnet (AN-LG004) 0,027 0,109 0,028 Vinylchlorid mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	1,2,3,5-Tetramethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
Vinylchlorid mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050 < 0,050 < 0,050 Dichlormethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	1,2,3,4-Tetramethylbenzol	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
Dichlormethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010	Summe AKW (ALEX 05)	mg/m³		berechnet (AN-LG004)	0,027	0,109	0,028
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Vinylchlorid	mg/m³	0,05	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
cis-1,2-Dichlorethen mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,0	Dichlormethan	mg/m³	0,05	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
Trichlormethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 <td>trans-1,2-Dichlorethen</td> <td>mg/m³</td> <td>0,05</td> <td>VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)</td> <td>< 0,050</td> <td>< 0,050</td> <td>< 0,050</td>	trans-1,2-Dichlorethen	mg/m³	0,05	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
1,1,1-Trichlorethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,01	cis-1,2-Dichlorethen	mg/m³	0,05	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
Tetrachlormethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,020 < 0,010 < 0,010 < 0,020 < 0,010 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 </td <td>Trichlormethan</td> <td>mg/m³</td> <td>0,01</td> <td>VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)</td> <td>< 0,010</td> <td>< 0,010</td> <td>< 0,010</td>	Trichlormethan	mg/m³	0,01	VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
Trichlorethen mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,020 < 0,010 < 0,010 < 0,020 < 0,010 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050 < 0,050	1,1,1-Trichlorethan	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
Tetrachlorethen mg/m³ 0,01 VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004) < 0,010 0,020 < 0,010 1,1-Dichlorethen mg/m³ 0,05 VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004) < 0,050	Tetrachlormethan	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,1-Dichlorethen mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050 < 0,050 < 0,050 1,2-Dichlorethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	Trichlorethen	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,010	< 0,010	< 0,010
1,2-Dichlorethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050 < 0,050 < 0,050	Tetrachlorethen	mg/m³	0,01	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,010	0,020	< 0,010
	1,1-Dichlorethen	mg/m³	0,05	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
Summe 10 LHKW + VC mg/m³ berechnet (AN-LG004) (n. b.*) 0,02 (n. b.*)	1,2-Dichlorethan	mg/m³	0,05	VDI 2100 Bl. 2 / VDI 3865 Bl. 3 (AN-LG004)	< 0,050	< 0,050	< 0,050
	Summe 10 LHKW + VC	mg/m³		berechnet (AN-LG004)	(n. b.*)	0,02	(n. b.*)

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Erklärung zu Messstandorten und Akkreditierungen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

Nr. 80648005F3 Seite 3 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung		Bolu RKS13	Bolu RKS14
			Labornummer		015198676	015198677
			Anreicherung [I]		5	5
Parameter	Einheit	BG	Methode			

Bestimmung aus der Aktivkohle-Anreicherung

Benzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 0,019 < 0,010 0,020 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010
Ethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 m-/p-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,020 o-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 0,020 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010
m-/p-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,020 o-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	0,020 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010
o-Xylol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,3,5-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 < 0,010 < 0,010 < 0,010 < 0,010 < 0,010
1,3,5-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,2,4-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 < 0,010 < 0,010 < 0,010 < 0,010
1,2,4-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,010 1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 < 0,010 < 0,010 < 0,010
1,2,3-Trimethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 < 0,010 < 0,010
iso-Propylbenzol (Cumol) mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 n-Propylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010 < 0,010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0,010
2-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 3-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	
3-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 4-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
4-Ethyltoluol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,3-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	
1,3-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,2-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
1,2-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,4-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
1,4-Diethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010 1,2,4,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
1,2,4,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
	< 0,010
4.0.0 F T-trans attails are at 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 0,010
1,2,3,5-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
1,2,3,4-Tetramethylbenzol mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
Summe AKW (ALEX 05) mg/m³ berechnet (AN-LG004) 0,047	0,039
Vinylchlorid mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	< 0,050
Dichlormethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	< 0,050
trans-1,2-Dichlorethen mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	< 0,050
cis-1,2-Dichlorethen mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	< 0,050
Trichlormethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
1,1,1-Trichlorethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
Tetrachlormethan mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
Trichlorethen mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,010	< 0,010
Tetrachlorethen mg/m³ 0,01 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) 0,014	< 0,010
1,1-Dichlorethen mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	
1,2-Dichlorethan mg/m³ 0,05 VDI 2100 BI. 2 / VDI 3865 BI. 3 (AN-LG004) < 0,050	< 0,050
Summe 10 LHKW + VC mg/m³ berechnet (AN-LG004) 0,014	< 0,050 < 0,050

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Erklärung zu Messstandorten und Akkreditierungen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

Nr. 80648006F1

EUROFINS Umwelt West GmbH · Ndl. Speyer · Hasenpfühlerweide 16 · D-67346 Speyer

IGB Rhein-Neckar Ingenieurgesellschaft mbH Heinigstraße 26

67059 Ludwigshafen

Titel: Prüfbericht zu Auftrag 01550474

Prüfberichtsnummer: Nr. 80648006F1

Projektnummer: Nr. 80648

Projektbezeichnung: 14-5010 NBG Russenweiher, Speyer

Probenumfang: 1 Probe Probenart: Grundwasser Probenehmer: Auftraggeber Probeneingang: 31.10.2015

Prüfzeitraum: 31.10.2015 - 06.11.2015

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Nach DIN EN ISO/IEC 17025 durch die DAkkS Deutsche Akkreditierungsstelle GmbH akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkundenanlage aufgeführten Prüfverfahren.

Speyer, den 11.11.2015

Dr. Eva Siedler Prüfleiterin

Tel.: 06232 / 8767711

Prüfbericht zu Auftrag 01550474

Nr. 80648006F1

Seite 2 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung	WP RKS12 (P2)
			Labornummer	015198678
Parameter	Einheit	BG	Methode	

Chemisch-physikalische Parameter

Gesamttrockenrückstand (105℃)	mg/l	20	DIN 38409-H1-1 (AN-LG004)	700
Gesamtglührückstand (550℃)	mg/l	20	DIN 38409-H1-3 (AN-LG004)	580
Säurekapazität pH 4,3	mmol/l	0,1	DIN 38409-H7 (AN-LG004)	7,8
Gesamthärte	mmol/l	0,002	DIN EN ISO 17294-2 (AN-LG004)	5,14
Gesamthärte	ЯH	0,01	DIN EN ISO 17294-2 (AN-LG004)	28,8
Chlorid	mg/l	1	DIN EN ISO 10304-1 (AN-LG004)	39
Sulfat	mg/l	1	DIN EN ISO 10304-1 (AN-LG004)	121
Ammonium	mg/l	0,06	E DIN ISO 15923-1 (AN-LG004)	< 0,06
Nitrat	mg/l	1	DIN EN ISO 10304-1 (AN-LG004)	< 1,0
Cyanid, gesamt	mg/l	0,005	DIN EN ISO 14403 (AN-LG004)	< 0,005
DOC	mg/l	1	DIN EN 1484 (AN-LG004)	6,0
Kohlenwasserstoffe C10-C40	mg/l	0,1	DIN EN ISO 9377-2 (AN-LG004)	< 0,10

Metalle und Halbmetalle

Arsen	mg/l	0,001	DIN EN ISO 17294-2 (AN-LG004)	0,003
Blei	mg/l	0,001	DIN EN ISO 17294-2 (AN-LG004)	0,008
Cadmium	mg/l	0,0002	DIN EN ISO 17294-2 (AN-LG004)	< 0,0002
Calcium	mg/l	0,02	DIN EN ISO 17294-2 (AN-LG004)	173
Chrom	mg/l	0,001	DIN EN ISO 17294-2 (AN-LG004)	< 0,001
Kalium	mg/l	0,05	DIN EN ISO 17294-2 (AN-LG004)	7,48
Kupfer	mg/l	0,001	DIN EN ISO 17294-2 (AN-LG004)	0,003
Magnesium	mg/l	0,02	DIN EN ISO 17294-2 (AN-LG004)	20,1
Natrium	mg/l	0,05	DIN EN ISO 17294-2 (AN-LG004)	23,9
Nickel	mg/l	0,001	DIN EN ISO 17294-2 (AN-LG004)	0,002
Quecksilber	mg/l	0,0001	DIN EN 1483 (AN-LG004)	< 0,0001
Zink	mg/l	0,002	DIN EN ISO 17294-2 (AN-LG004)	0,073

LHKW

Vinylchlorid	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
Dichlormethan	μg/l	1	DIN EN ISO 10301 (AN-LG004)	< 1
trans-1,2-Dichlorethen	μg/l	1	DIN EN ISO 10301 (AN-LG004)	< 1
cis-1,2-Dichlorethen	μg/l	1	DIN EN ISO 10301 (AN-LG004)	< 1
Trichlormethan	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
1,1,1-Trichlorethan	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
Tetrachlormethan	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
Trichlorethen	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
Tetrachlorethen	μg/l	0,5	DIN EN ISO 10301 (AN-LG004)	< 0,5
1,1-Dichlorethen	μg/l	1	DIN EN ISO 10301 (AN-LG004)	< 1
1,2-Dichlorethan	μg/l	1	DIN EN ISO 10301 (AN-LG004)	< 1
Summe 10 LHKW + VC	μg/l		berechnet (AN-LG004)	(n. b.*)

BTEX-Aromaten

Benzol	μg/l	0,5	DIN 38407-F9-1 (MSD) (AN-LG004)	< 0,5
Toluol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
Ethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
m-/p-Xylol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
o-Xylol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1

Nr. 80648006F1

Seite 3 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung	WP RKS12 (P2)
			Labornummer	015198678
Parameter	Einheit	BG	Methode	

Aromatische Kohlenwasserstoffe (Testbenzin)

1,3,5-Trimethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2,4-Trimethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2,3-Trimethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
iso-Propylbenzol (Cumol)	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
n-Propylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
2-Ethyltoluol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
3-Ethyltoluol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
4-Ethyltoluol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,3-Diethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2-Diethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,4-Diethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2,4,5-Tetramethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2,3,5-Tetramethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
1,2,3,4-Tetramethylbenzol	μg/l	1	DIN 38407-F9-1 (MSD) (AN-LG004)	< 1
Summe AKW (ALEX 05)	μg/l		berechnet (AN-LG004)	(n. b.*)
	۳9٬۰			(2.)

Polycyclische Aromatische Kohlenwasserstoffe (PAK)

Naphthalin	μg/l	0,05	DIN 38407-F39 (AN-LG004)	0,20
Acenaphthylen	μg/l	0,05	DIN 38407-F39 (AN-LG004)	0,13
Acenaphthen	μg/l	0,05	DIN 38407-F39 (AN-LG004)	0,33
Fluoren	μg/l	0,05	DIN 38407-F39 (AN-LG004)	0,41
Phenanthren	μg/l	0,05	DIN 38407-F39 (AN-LG004)	5,6
Anthracen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	1,2
Fluoranthen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	9,1
Pyren	μg/l	0,01	DIN 38407-F39 (AN-LG004)	5,8
Benz(a)anthracen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	3,4
Chrysen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	2,9
Benzo(b)fluoranthen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	3,6
Benzo(k)fluoranthen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	1,3
Benzo(a)pyren	μg/l	0,01	DIN 38407-F39 (AN-LG004)	2,6
Indeno(1,2,3-cd)pyren	μg/l	0,01	DIN 38407-F39 (AN-LG004)	1,7
Dibenz(a,h)anthracen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	0,50
Benzo(g,h,i)perylen	μg/l	0,01	DIN 38407-F39 (AN-LG004)	1,6
Summe PAK (EPA)	μg/l		berechnet (AN-LG004)	40,4

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Erklärung zu Messstandorten und Akkreditierungen Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

EUROFINS Umwelt West GmbH · Ndl. Speyer · Hasenpfühlerweide 16 · D-67346 Speyer

IGB Rhein-Neckar Ingenieurgesellschaft mbH Heinigstraße 26

67059 Ludwigshafen

Titel: Prüfbericht zu Auftrag 01550472

Prüfberichtsnummer: Nr. 80648007

Projektnummer: Nr. 80648

Projektbezeichnung: 14-5010 NBG Russenweiher, Speyer

Probenumfang: 4 Proben Probenart: **Boden**

Probenehmer: Auftraggeber Probeneingang: 31.10.2015

Prüfzeitraum: 31.10.2015 - 11.11.2015

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Nach DIN EN ISO/IEC 17025 durch die DAkkS Deutsche Akkreditierungsstelle GmbH akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkundenanlage aufgeführten Prüfverfahren.

Speyer, den 16.11.2015

Dr. Eva Siedler Prüfleiterin

Tel.: 06232 / 8767711

eurofins

Nr. 80648007

Seite 2 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung	IV A-MP1	IV B-MP1	IV C-MP1	IV D-MP1
			Labornummer	015198651	015198652	015198653	015198654
Parameter	Einheit	BG	Methode				

Bestimmung aus der Originalsubstanz

Anteil < 2mm	% TS	0,1	DIN ISO 11464 (AN-LG004)	79,6	77,3	68,8	77,3
Anteil > 2mm	% TS	0,1	DIN ISO 11464 (AN-LG004)	20,4	22,7	31,2	22,7
Trockenmasse	Ma%	0,1	DIN EN 14346 (AN-LG004)	92,1	92,9	92,6	91,4

Bestimmung aus der Originalsubstanz (Fraktion <2mm)

Cyanid, gesamt	mg/kg TS	0,5	DIN ISO 17380 (AN-LG004)	< 0,5	< 0,5	< 0,5	< 0,5
Naphthalin	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	< 0,05	< 0,05	< 0,05	< 0,05
Acenaphthylen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,06	< 0,05	0,07	< 0,05
Acenaphthen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,06	< 0,05	0,1	< 0,05
Fluoren	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,07	< 0,05	0,1	< 0,05
Phenanthren	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,6	0,2	1,1	0,2
Anthracen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,2	0,08	0,4	0,08
Fluoranthen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	1,1	0,6	2,1	0,6
Pyren	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	1,0	0,6	1,8	0,5
Benz(a)anthracen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,6	0,3	1,0	0,4
Chrysen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,5	0,3	0,8	0,3
Benzo(b)fluoranthen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,4	0,5	1,1	0,3
Benzo(k)fluoranthen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,3	0,2	0,4	0,2
Benzo(a)pyren	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,6	0,3	0,9	0,4
Indeno(1,2,3-cd)pyren	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,4	0,2	0,5	0,3
Dibenz(a,h)anthracen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,08	< 0,05	0,10	0,06
Benzo(g,h,i)perylen	mg/kg TS	0,05	DIN ISO 18287 (AN-LG004)	0,4	0,2	0,5	0,3
Summe PAK (EPA)	mg/kg TS		berechnet (AN-LG004)	6,37	3,48	11,0	3,64
PCB 28	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	< 0,01	< 0,01	< 0,01
PCB 52	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	< 0,01	< 0,01	< 0,01
PCB 101	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	< 0,01	< 0,01	< 0,01
PCB 153	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	0,01	< 0,01	< 0,01
PCB 138	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	0,01	< 0,01	< 0,01
PCB 180	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	< 0,01	< 0,01	< 0,01
Summe 6 PCB	mg/kg TS		berechnet (AN-LG004)	(n. b.*)	0,02	(n. b.*)	(n. b.*)
PCB 118	mg/kg TS	0,01	DIN ISO 10382 / DIN 38414-S20 (AN-LG004)	< 0,01	< 0,01	< 0,01	< 0,01
Summe 7 PCB	mg/kg TS		berechnet (AN-LG004)	(n. b.*)	0,02	(n. b.*)	(n. b.*)
Aldrin	mg/kg TS	0,2	DIN ISO 10382 (MSD) (AN-LG004)	< 0,2	< 0,2	< 0,2	< 0,2
2,4'-DDT	mg/kg TS	4	DIN ISO 10382 (MSD) (AN-LG004)	< 4	< 4	< 4	< 4
4,4'-DDT	mg/kg TS	4	DIN ISO 10382 (MSD) (AN-LG004)	< 4	< 4	< 4	< 4
DDT (2,4'-DDT +4,4'-DDT)	mg/kg TS		berechnet (AN-LG004)	(n. b.*)	(n. b.*)	(n. b.*)	(n. b.*)
Hexachlorbenzol (HCB)	mg/kg TS	0,4	DIN ISO 10382 (MSD) (AN-LG004)	< 0,4	< 0,4	< 0,4	< 0,4
Hexachlorcyclohexan, alpha	mg/kg TS	0,5	DIN ISO 10382 (MSD) (AN-LG004)	< 0,5	< 0,5	< 0,5	< 0,5
Hexachlorcyclohexan, beta	mg/kg TS	0,5	DIN ISO 10382 (MSD) (AN-LG004)	< 0,5	< 0,5	< 0,5	< 0,5
Hexachlorcyclohexan, gamma	mg/kg TS	0,5	DIN ISO 10382 (MSD) (AN-LG004)	< 0,5	< 0,5	< 0,5	< 0,5
Hexachlorcyclohexan, delta	mg/kg TS	0,5	DIN ISO 10382 (MSD) (AN-LG004)	< 0,5	< 0,5	< 0,5	< 0,5
Pentachlorphenol	mg/kg TS	0,05	analog DIN EN 12673 (FR-JE02 /f)	< 0,05	< 0,05	< 0,05	< 0,05

Prüfbericht zu Auftrag 01550472

Nr. 80648007 Seite 3 von 3

Projekt: 14-5010 NBG Russenweiher, Speyer

			Probenbezeichnung	IV A-MP1	IV B-MP1	IV C-MP1	IV D-MP1
			Labornummer	015198651	015198652	015198653	015198654
Parameter	Einheit	BG	Methode				

Bestimmung aus dem Königswasseraufschluss (Fraktion <2mm)

Arsen	mg/kg TS	0,8	DIN EN ISO 17294-2 (AN-LG004)	9,2	12,2	10,1	9,1
Blei	mg/kg TS	2	DIN EN ISO 17294-2 (AN-LG004)	74	71	77	105
Cadmium	mg/kg TS	0,2	DIN EN ISO 17294-2 (AN-LG004)	0,3	0,3	0,3	0,3
Chrom, gesamt	mg/kg TS	1	DIN EN ISO 17294-2 (AN-LG004)	27	26	29	25
Nickel	mg/kg TS	1	DIN EN ISO 17294-2 (AN-LG004)	24	22	25	20
Quecksilber	mg/kg TS	0,07	DIN EN 1483 (AN-LG004)	0,22	0,18	0,22	0,27

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Erklärung zu Messstandorten und Akkreditierungen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach

DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

Die mit FR gekennzeichneten Parameter wurden von EUROFINS Umwelt Ost GmbH (Bobritzsch-Hilbersdorf) analysiert. Die mit JE02 gekennzeichneten Parameter sind nach

DIN EN ISO/IEC 17025:2005 D-PL-14081-01-00 akkreditiert.

f: Die Analyse des Parameters erfolgte in Fremdvergabe.

WST-GmbH, Elly-Beinhorn-Str. 6, D-69214 Eppelheim

Projekt: NBG Russenweiher Altablagerung, Speyer

WST-Proj.-Nr: 1510CF

Ausführender: A. Dirschka, Dipl.-Geol.

UTM Koordinaten

Sondierpunkt	Koordinaten		
RKS 1	54.618.528.800,00	324.593.086.300,00	0.0000
RKS 2	54.618.401.200,00	324.593.107.000,00	0.0000
RKS 3	54.618.524.900,00	324.593.168.400,00	0.0000
RKS 4	54.618.424.000,00	324.592.965.300,00	0.0000
RKS 5	54.618.307.500,00	324.592.992.600,00	0.0000
RKS 6	54.618.393.800,00	324.593.039.300,00	0.0000
RKS 7	54.618.335.600,00	324.592.764.300,00	0.0000
RKS 8	54.618.219.700,00	324.592.799.900,00	0.0000
RKS 9	54.618.275.700,00	324.592.857.900,00	0.0000
RKS 10	54.618.280.200,00	324.593.117.100,00	0.0000
RKS 11	54.618.018.400,00	324.592.644.100,00	0.0000
RKS 12	54.618.140.300,00	324.592.731.700,00	0.0000
RKS 13	54.618.140.300,00	324.592.592.600,00	0.0000
RKS 14	54.618.067.600,00	324.592.808.900,00	0.0000
W1	54.618.362.700,00	324.592.821.600,00	0.0000
W2	54.618.431.900,00	324.592.900.700,00	0.0000
W3	54.618.493.900,00	324.592.971.500,00	0.0000
W4	54.618.651.600,00	324.593.151.600,00	0.0000
W5	54.618.599.400,00	324.593.189.500,00	0.0000
W6	54.618.572.200,00	324.593.151.700,00	0.0000
W7	54.618.450.500,00	324.593.255.800,00	0.0000
W8	54.618.328.400,00	324.593.116.500,00	0.0000
W9	54.618.197.100,00	324.592.966.600,00	0.0000
W10	54.618.130.600,00	324.592.890.600,00	0.0000
W11	54.618.241.800,00	324.592.593.700,00	0.0000
W12	54.618.474.800,00	324.592.863.600,00	0.0000
W13 P1 ROK BSZ	54.618.634.403,00	324.591.984.099,00	1.452.117,00
W14 P1 GOK	54.618.634.005,00	324.591.984.318,00	1.447.804,00
W15 Versickerungsve	54.618.628.411,00	324.591.991.487,00	1.447.701,00

WST-GmbH, Elly-Beinhorn-Str, 6, D-69214 Eppelheim

Projekt: NBG Russenweiher Altalagerung, Speyer

WST-Proj,-Nr: 1510CF AG-Proj,-Nr: 14-5025 Datum: 30,10,2015

Ausführender: A, Dirschka, Dipl,-Geol,

Nivellement

Punkt	m zu Bezugspunkt	Ablesewerte	Gerätehöhe 1
* Bezugspunkt	96,313	1,410	97,723
Zwischenpunkt 1	96,673	-1,050	
Gerätehöhe 2	98,563	1,890	
RKS 13	96,483	-2,080	
RKS 7	96,133	-2,430	
RKS 8	95,768	-2,795	
RKS 12 (GOK)	95,793	-2,770	
RKS 12 (ROK-Neu)	97,043	-1,520	
Gerätehöhe 3	98,123	1,080	
RKS 11	97,278	-0,845	
RKS 14	96,543	-1,580	
RKS 9 (GOK)	96,773	-1,350	
RKS 9 (ROK)	97,053	-1,070	
RKS 4	96,913	-1,210	
RKS 5	96,493	-1,630	
RKS 10	95,998	-2,125	
RKS 6 (GOK)	96,633	-1,490	
RKS 6 (ROK)	96,913	-1,210	
P1 (GOK)	95,882	-0,431	
vvs	95,872	-0,441	

^{*} Bezugspunkt: ROK P1 (siehe Lageeinmaß)

Projekt: NBG Russenweiher Altablagerung, Speyer

Datum: 28.10.+29.10.2015

WST-Projekt-Nr: 1510CF AG-Projekt-Nr: 14-5025

Ausführung: A. Dirschka, Dipl.-Geol.

Kampfmittelerkundung - punktuelle Oberflächenfreimessung

Sondierstelle	Datum	Oberflächen-	Sondierstelle	Datum	Oberflächen-
		freimessung			freimessung
P1	28.10.2015	unauffällig			
Bohrung Versickerungsversuch	28.10.2015	unauffällig			
RKS 12	28.10.2015	unauffällig			
RKS 13	28.10.2015	unauffällig			
RKS 14	28.10.2015	unauffällig			
RKS 4	29.10.2015	unauffällig			
RKS 5	29.10.2015	unauffällig			
RKS 6	29.10.2015	unauffällig			
RKS 7	29.10.2015	unauffällig			
RKS 8	29.10.2015	unauffällig			
RKS 9	29.10.2015	unauffällig			
RKS 10	29.10.2015	unauffällig			
RKS 11	29.10.2015	unauffällig			

Die WST - GmbH besitzt die Erlaubnis gemäß §7 SprengG. zum Umgang und zum Verkehr mit explosionsgefährlichen Stoffen. Die Arbeiten wurden nach Stand der Technik ausgeführt.

Wir machen darauf aufmerksam, dass die erfolgte Kampfmittelerkundung nur zur Risikominderung beiträgt. Eine Aussage über das Vorhandensein von Kampfmitteln im Untergrund ist nur auf das unmittelbare Umfeld der jeweiligen Kampfmittelsondierung /-freimessung beschränkt.

Kampfmittelfunde jeglicher Art können bei anschließenden Bohr- oder Bauarbeiten nicht gänzlich ausgeschlossen werden.

Eppelheim, den 29.10.2015

Frank Sighan